

Functional Testing with Argus Controller – As-run procedures, Test results and final Test report

Prepared by/Préparé par	Fossen, A., Stasiak, M., Tikhomirova, N, Gerbi, O. and
	Peiro, E.
Reference/Réference	MELiSSA Pilot Plant Frame Contract 19445/05/NL/CP
Issue/Edition	0
Revision/Révision	0
Date of issue/Date d'édition	23 April 2010
Status/Statut	Final

This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization Memorandum of Understanding 19071/05/NL/CP

1

.

M CLSS R TECHNICAL NOTE 96.5

APPROVAL

Title	Functional Testing with Argus Controller – As-run	i Issue	0 Revision 0
Titre	procedures, Test results and final Test report	Editio	n Révision
Prepared by	Fossen, A., Stasiak, M., Tikhomirova, N. Gerbi, O. and	Date	23 April 2010
Auteur	Peiro, E. Eurifu Pers	Date	
Checked by Verifié par	Peiro, E., Fossen, A. and Dixon, M.	Date Date	12 May 2010
Approved by Approuvé par	Gòdia, F.	Date Date	12 may 2010

Approved by customer	1 Louise D			
inplicated by clistomer	Lamaze, B.	Pl and	Date	17 January 2011
Approuve par le client		Declange	Date	17 Sandary 2011
		CIE O	Date	

CHANGE LOG

lssuc/Edition	Revision/Révision	Status/Statut	Date/Date
0	Ö	Final	23 April 2010
	0	Final	23 April 20

.

Distribution List

Name/Nom Brigitte LAMAZE

Company/Société ESA

Quantity/Quantité 2 hardcopies + electronic version

TABLE OF CONTENTS

1	Intro	duction	8
	1.1	Purpose and Structure of Test Report	8
	1.2	General Procedures for Test Results Data Acquisition	8
	1.3	General Control System Test Procedures	8
	1.4	Conditions of Acceptance	8
	1.5	Additional testing to prepare the switch to Schneider control system	9
2	Fund	tional, Control and Operational Tests Program as conducted for HPC1	10
3	Exte	rior Air Lock Door Functional Testing	17
	3.1	Procedure ID: MPP-HPC1-EXTERIOR AIRLOCK DOOR - FT	17
	3.2	Introduction	17
	3.3	Acronyms used in this test plan procedure	17
	3.4	Applicable documents	17
	3.5	Acceptance/rejection criteria	17
	3.6	Environmental requirements	17
	3.7	Safety aspects	18
	3.8	Test set-up	18
	3.9	Test As-Run Procedure	18
	3.10	Conclusions	19
	3.11	Deviations	19
4	Inter	or Air Lock Door Functional Testing	20
	4.1	Procedure ID: MPP-HPC1-INTERIOR AIRLOCK DOOR - FT	20
	4.2	Introduction	20
	4.3	Acronyms used in this test plan procedure	20
	4.4	Applicable documents	20
	4.5	Acceptance/rejection criteria	20
	4.6	Environmental requirements	20
	4.7	Safety aspects	21
	4.8	Test set-up	21
	4.9	Test As-Run Procedure	21
	4.10	Conclusions	22
	4.11	Deviations	22
5	Air L	ock Purge System Functional Testing	23
	5.1	Procedure ID: MPP-HPC1-AIRLOCK PURGE - FT	23
	5.2	Introduction	23
	5.3	Acronyms used in this test plan procedure	23
	5.4	Applicable documents	23
	5.5	Data Log File Names:	23
	5.6	Parts Tested (P&ID Reference):	23
	5.7	Acceptance/rejection criteria	23
	5.8	Environmental requirements	24
	5.9	Safety aspects	24
	5.10	Test set-up	24
	5.11	Test As-Run Procedure	25
	5.12	Conclusions	27
	5.13	Deviations	27

6	Light	ing Sub-System Functional Testing	29
	6.1	Procedure ID: MPP-HPC1-LIGHTING-FT	29
	6.2	Introduction	29
	6.3	Acronyms used in this test plan procedure	29
	6.4	Applicable documents	29
	6.5	Data Log File Name:	29
	6.6	Parts Tested (P&ID Reference):	29
	6.7	Acceptance/rejection criteria	30
	6.8	Environmental requirements	30
	6.9	Safety aspects	30
	6.10	Test set-up	31
	6.11	Test As-Run Procedure	32
	6.12	Conclusions	36
	6.13	Deviations	36
7	Air C	irculation Fan Functional Testing	37
•	71	Procedure ID ⁻ MPP-HPC1 – Blower Assembly – FT	37
	72	Introduction	37
	7.3	Acronyms used in the test	37
	74	Applicable documents	37
	7.5	Data Log File Name	37
	7.6	Parts Tested (P&ID Reference)	37
	77	Acceptance/rejection criteria	38
	7.8	Environmental requirements	38
	7.9	Safety aspects	38
	7 10	Test set-un	38
	7.10	Test As-Run Procedure	38
	7.11	Conclusions	39
	7.12	Deviations	40
8	Gae	Analysis System Functional Testing	
0	8 1	Procedure ID: MPP-HPC1-GAS_ANALYSIS - FT	<u>4</u> 1
	8.2	Introduction	<u>/</u> 1
	0.Z 8 3	Acronyms used in this test plan procedure	<u>7</u> 1
	8.4	Applicable documents	<u>7</u> 1
	0. - 8.5	Data Log File Namee:	11
	8.6	Data Loy I lie Nalles.	11
	0.0	Accontanco/rejection criteria	41
	0.7	Environmontal requiremente	41
	0.0	Environmental requirements	42
	0.9	Salely aspecis	42
	0.10	Test & Dup Dropoduro	42
	0.11	Conclusions	43
	0.12	Deviations	40 45
0	0.13	DEVIDIUIIS	40
9	o 1		40
	9.1	INITY-ITY I-LEANAGE-FI	40
	9.Z		40

4

	9.3	Acronyms used in this test plan procedure	46
	9.4	Applicable documents	46
	9.5	Data Log File Name:	46
	9.6	Parts Tested (P&ID Reference)	46
	9.7	Acceptance/rejection criteria	46
	9.8	Environmental requirements	47
	9.9	Safety aspects	47
	9.10	Test set-up	47
	9.11	Test As-Run Procedure	49
	9.12	Conclusions	50
	9.13	Deviations	50
10	EC S	system Functional Testing	51
	10.1	Procedure ID: MPP-HPC1-EC – FT	51
	10.2	Introduction	51
	10.3	Acronyms used in this test plan procedure	51
	10.4	Applicable documents	51
	10.5	Data Log File Names:	51
	10.6	Parts Tested (P&ID Reference):	51
	10.7	Acceptance/rejection criteria	51
	10.8	Environmental requirements	52
	10.9	Safety aspects	52
	10.10	lest set-up	52
	10.11	Test As-Run Procedure	53
	10.12		56
	10.13		56
11	ph S	Use and use Up MDD UDC4 with ET	5/
	11.1	Procedure ID: MPP-HPC1-pH – F1	5/
	11.Z	Introduction.	57
	11.3	Acronyms used in this test plan procedure	57
	11.4	Applicable documents	57
	11.5	Data Log File Names:	57
	11.0	Parts Tested (P&ID Reference):	57
	11.7		50
	11.0	Safety aspects	50
	11.9	Tost set up	50
	11.10	Test & Pun Procedure	50
	11.11	Conclusions	62
	11.12	Deviations	62
12	Irria	tion Sub-System Functional Testing	62
12	12 1	Procedure ID: MPP-HPC1-IRRIGATION-FT	63
	12.1	Introduction	63
	12.2	Acronyms used in this test plan procedure	62
	12.0	Applicable documents	62
	12.7	Data Lon File Name [.]	62
	12.0	Data Log File Marile.	00

5

12.6 12.7 12.8 12.9 12.10 12.11 12.12 Conclusions 65 12.13 13 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 13.10 13.11 13.12 13.13 14 14.1 14.2 14.314.4 Germination, Emergence, Thinning, Planting72 14.5 14.6 Analysis of Net Carbon Exchange Rate and Assessment of Model Performance 73 14.7 14.8 Data log file names......74 15.1 15.2 15.315.4 15.5 15.6 16 Complementary tests : open and closed loop tests with ARGUS controller...... 104 17 17.1 Introduction......104 17.2 Open Loop on Heat Exchangers valves 105 17.3 17.4 Closed Loop EC April 2nd 110 17.5 Closed Loop Tests with crops 111

6

		0	
22	Comments		 73

1 Introduction

1.1 Purpose and Structure of Test Report

The information contained in this technical note is presenting the results of the tests carried out to ensure that the HPC1 prototype designed and constructed by the University of Guelph and Angstrom Engineering adheres to the specifications of ESA, as defined in Annex to Appendix 1 of RFQ 3-11515.

This test report consists of three main sections. First, a series of Functional Tests that will demonstrate the functionality of all chamber parts. Secondly, formal control tests aimed at demonstrating chamber adherence to the environment control requirements listed in Annex to Appendix 1 of RFQ 3-11515. The final operational test consisting of a batch culture of lettuce conducted under static conditions. The batch culture of lettuce with an Argus Controller was not a full crop cycle, as it was intended to test subsystem performance under full operational conditions.

1.2 General Procedures for Test Results Data Acquisition

The functional tests outlined in Section 2 will rely on either a visual inspection or confirmation of signal transfer to/from the Argus controller. Operational tests will rely on data logs recorded by the Argus controller over the period of the test.

1.3 General Control System Test Procedures

The purpose of the control system tests outlined in Section 2 below is to demonstrate chamber performance and adherence to the environmental control specifications. As part of their subcontract, Argus calibrates control procedures, particularly in the case of thermal and VPD control in-house. Procedures for controller calibration are proprietary and therefore not provided, and the Argus system is considered a "black-box" controller.

1.4 Conditions of Acceptance

In the case of functional tests, the requirements for acceptance of hardware are defined in the acceptance criteria of the individual test procedure, unless otherwise defined below. Acceptance of control tests is based on the technical specifications for environmental control as defined by ESA. The relevant section from the contract RFQ is reproduced below. The control test plan (sometimes referred to as the profile tests) are designed to demonstrate the functioning of the various control loops in maintaining the environmental/biological requirements defined in the table below.

Also, during the functional, operational (profile) and crop tests, the chamber shall be demonstrated to adhere to all sections of Annex to Appendix 1 of RFQ 3-11515. The requirements defined in the Annex to Appendix 1 of the RFQ are qualitative and no numerical bounds were defined.

Requirement Item Illumination light 0 – 800 µE PAR selectable in four discrete levels (no lamps, 3 lamps, levels 6 lamps, 9 lamps) Illumination night 0 – 10 µE PAR levels Day/night cycle Any combination of 1 day and 1 night period within a 24 hour span Air Temperature Selectable within 15 - 30 °C Temperature Demand +/- 0.5 °C Accuracy Internal Air Not less than 1 crop volume per minute (refreshment) circulation rate Air Velocity From 0.1-0.8 m/s Water Supply in the 3 to 5 litres per minute average over all trays - equivalent to approximately 200mL/min/tray Roots Nutrient Supply Hydroponics (NFT) cultivation with EC demands of 0 – 3 mS/cm pH: 5.8 +/- 0.5 EC: 1.9 mS/cm +/- 0.05 mS/cm Dissolved O₂: 80 – 100% of saturation (not analyzed ,not controllable) Ambient (typically 101 kPa +/- 2 kPa per hour) Pressure Atmospheric Humidity: 50 – 85% (no accuracy specified) $O_2 - 20\% + - 1\%$ (ambient levels - not controlled) Composition CO_2 - 300 – 2000 ppm (no accuracy for control specified) N₂- Balance to 100% (not measured)

Table 1. list of HPC requirements

1.5 Additional testing to prepare the switch to Schneider control system

Sherpa Engineering had requested a series of open and closed loop tests to characterize chamber operation with the Argus Control System prior to installation and software customization of the Schneider hardware. The purpose of this testing was to gain better understanding of system control algorithms and control response criteria that are difficult to determine without direct response testing. The main results of these tests have been included in Section 17, and the extensive data in Appendix 3 of this technical note, but they are not directly related to the original HPC functional testing criteria.

2 Functional, Control and Operational Tests Program as conducted for HPC1

Test	Procedure /Procedure number	Date	Duratio	Status
		(dd/mm/yy)	n (days)	(P/F)
1 Exterior Airlack Deere	MDD UDC4 Exterior Airlack Deer ET	06/02/00	0.05	Deced
1. Exterior Alriock Doors	MPP-HPC1-Exterior_Airlock_Door- Fi	06/02/09	0.05	Passed
	1. Demonstration of procedures/test for opening/closing the			
	exterior air lock doors and tray mounting/dismount.			
	2. Functional demonstration of the door open/closed switch/LED			
	indicator circuit			
	Parts Tested (P&ID Reference):			
	1. ZS_4100_01, ZS_4100_02, ZI_4100_01			
	2. ZS_4101_01, ZS_4101_02, ZI_4101_01			
2. Interior Airlock Doors	MPP-HPC1 – Interior_Airlock_Door – FT	06/02/09	0.05	Passed
	Demonstration of procedures/test for opening/closing the interior air			
	lock door and tray movement in harvest and planting using glove			
	access			
3. Airlock Purge	MPP-HPC1 – Airlock_Purge – FT	04/02/09	0.1	Passed
	Sequence:			
	 Testing of air lock injection and vent solenoids 			
	2. Testing of air lock pressure sensors			
	Parts Tested (P&ID Reference):			
	1. RV_4100_01, SV_4102_01, SV_4102_02, PT_4102_01,			
	PS_4102_01, HV_4102_01			
	2. RV_4101_01, SV_4103_01, SV_4103_02, PT_4103_01,			
	PS_4103_01, HV_4103_01			
4. Lighting	MPP-HPC1 – Lighting – FT	09/03/09	0.05	Passed
	Sequence:			
	1. Testing of the lamp loft cooling fans			
	2. Testing of the lamp loft temperature sensors			
	3. Testing of the lamp loft air flow indicator			

	4. Testing of the lamp string relays and high-powered contactors			
	to activate the lamps			
	Parts Tested (P&ID Reference):			
	1. TT_4105_01, TT_4105_02, TT_4105_03 (lamp loft			
	temperature transducers)			
	2. FAN_4105_01, FAN_4105_02, FAN_4105_03 (lamp loft			
	cooling fans)			
	 FSL_4105_01, FSL_4105_02, FSL_4105_03 (lamp loft air flow sensors) 			
	4. RT 4104 01. RT 4104 02. RT 4104 03 (PAR sensors)			
	5. IY 4104 01, IY 4104 02, IY 4104 03 (lamp string relays and			
	contactors)			
	6. LHPS 4104 01 through 06 (HPS Lamps)			
	7. LMH 4104 01 through 03 (MH Lamps)			
5. Main Centrifugal Blower and	MPP-HPC1 – Blower Assembly – FT	11/03/09	0.05	Passed
VFD Motor	Sequence:			
	1. Visual inspection of the pulley assembly, support and rotary			
	feed-through shaft			
	2. Testing of the air circulation fan			
	3. Testing of the air velocity sensor			
	Parts Tested (P&ID Reference):			
	1. BLWR 4111 01 (Air Circulation Fan)			
	2. MVFD_4111_01 (Air Circulation Motor)			
	3. FT 4111 01 (Air Velocity Sensor)			
6. Gas Analysis	MPP-HPC1 – Gas Analysis – FT	11/03/09	0.05	Passed
,	Sequence:			
	1. Demonstration of IRGA functioning			
	2 Demonstration of Ω_2 analyzer functioning			
	3 Demonstration of the factory calibrated mass flow controller			
	(with set-noint)			
	4 Test of CO ₂ injection line solenoid			
	Parts Tested (P&ID Reference):			
	1. AT 4113 01 (CO ₂ Analyzer/IRGA)			

	2. AT 4113 02 (O ₂ Sensor)			
	3. FC_4113_01 (Mass Flow Controller for CO ₂)			
	4. SV_4113_01 (CO ₂ injection line Solenoid)			
7. Integrity leakage Test	MPP-HPC1 – Leakage – FT	11/03/09	2	Passed
	Performance of passive CO ₂ decay test with running air circulation fan			
	to determine operational leakage rate			
8. EC System	MPP-HPC1 –EC – FT	10/03/09	0.05	Passed
-	Sequence:			
	1. Integrity of Stock A and B tanks			
	2. Stock tank A and B injection solenoids			
	3. Stock tank A and B low level switches			
	4. Stock A and B manual valves			
	5. Testing of EC sensor			
	Parts Tested (P&ID Reference):			
	1. VSSL_4108_01, VSSL_4108_02 (Stock Tanks A and B)			
	2. SV_4108_01, SV_4108_02 (Stock A and B injection valves)			
	3. LSL_4108_01, LSL_4108_02 (Stock A and B tank low level			
	switches)			
	4. HV_4108_01, HV_4108_01 (Stock A and B Injection Manual			
	Override Valves			
	5. AT_4108_01 (EC Sensor)			
9. pH	MPP-HPC1 – pH – FT	10/03/09	0.05	Passed
	Sequence:			
	 Integrity of Acid and Base tanks 			
	Testing of Acid and Base Tank injection solenoids			
	Testing of Acid and Base Tank low level switches			
	Demonstration of Acid and Base Tank manual valves			
	5. Testing of pH sensor			
	Parts Tested (P&ID Reference):			
	1. VSSL_4107_01, VSSL_4107_02 (Acid and Base Tanks)			
	2. SV_4107_01, SV_4107_02 (Acid and Base injection valves)			
	3. LSL_4107_01, LSL_4107_02 (Acid and Base tank low level			

	switches)			
	4. HV 4107 01. HV 4107 01 (Acid and Base Injection Manual			
	Override Valves)			
	5. AT 4107 01 (pH Sensor)			
10. Irrigation System	MPP-HPC1 – Irrigation – FT	04/02/09 and	0.2	Passed
	Sequence:	06/02/09		
	1. Integrity of nutrient reservoir and plumbing (leakage)			
	2. Demonstration of main irrigation pump			
	3. Testing of irrigation flow sensor			
	4. Demonstration of manual valves positioned on the by-pass and			
	main irrigation lines			
	5. Demonstration of irrigation flow balancing along the internal			
	distribution manifold			
	6. Testing of nutrient tank Hi/Low switches			
	Parts Tested (P&ID Reference):			
	1. GP_4106_01 (Main Ingation Pump)			
	2. FI_4106_01 (Inigation Flow Sensor)			
	3. HV_4106_01 (Manual Shuton to chamber			
	4. Imgalion manifold in chamber 5. EV/ 4106, 02 (Irrigation Dump Inlet Manual Override)			
	5. ΠV_4106_02 (Inigation Pullip Iniet Manual Override)			
	6. TV_4106_03 (Ingalion Drain Manual Overnue)			
	Valves)			
	8. HV 4106 05, HV 4106 06, HV 4106 7, HV 4106 8			
	(Manifold Balancing Ball Valves)			
	9. VSSL_4106 (Nutrient Reservoir)			
11. Temperature, Humidity and	MPP-HPC1 – Temp_Humidity – FT	05/02/09	0.05	Passed
condensate collection	Sequence:			
	 Testing of growing volume temperature sensors 			
	2. Testing of growing volume integrated humidity/temperature			
	sensors			
	Integrity and functionality of hot water coil			
	Integrity and functionality of chilled water coil			

	5.	Functionality of chilled and hot water valve			
	6.	Functionality of temperature sensors of water service lines			
		and coil surface temperature			
	7.	Integrity of condensate tank and fittings			
	8.	Testing of passive condensate drain from coil drip tray			
	9.	Testing of condensate tank high and low level switches			
	10	. Testing of condensate pump			
	Parts [•]	Tested (P&ID Reference):			
	1.	TT 4112 04 - 012 (Growing volume temperature sensors)			
	2.	AT 4112 01 - 03 and TT 4112 01 - 03 (growing volume			
		humidity and temperature sensors)			
	3.	S3CV 4112 01 and S3CV 4112 02 (water service line			
		control valves)			
	4.	TT 4112 13 ['] - 18 (water service line entry and exit			
		temperature sensors, coil surface temperature sensors)			
	5.	VSSL 4110 01 (Condensate Tank)			
	6.	LSL 4110 01, LSH 4110 02 (Condensate tank hi and low			
		level switches)			
	7.	GP 4110 01 (Condensate pump and relay)			
Control/Profile Tests					
Exterior Air Lock Door Control	MPP-H	IPC1-Exterior Airlock Door - CT	06/02/09	0.05	Passed
Loop 4100 and 4101	1.	Confirmation of controller reading of ZS 4100 01,			
		ZS 4100 02, ZS 4101 01 and ZS 4101 02			
Airlock Purge Control Loop 4102	MPP-H	IPC1 – Airlock Purge – CT	04/02/09	0.05	Passed
and 4103	1.	Confirmation of pressure sensor log PT 4102 01,			
		PT 4103 01			
	2.	Confirmation of reading pressure switch PS 4102 01 and			
		PS 4103 01			
Lighting Intensity and Loft	MPP-H	IPC1 – Lighting – CT	09/03/09	1.5	Passed
Temperature Control Loop 4104	1.	Sequential activation of lamp strings (LPHS 4104 01 through			
and 4105		LHPS 4104 06 and LMH 4104 01 through LMH 4104 03			
-		and activation of contactors IY 4104 01 through			
		IY 4104 03)			

	2. Confirmation of controller log of PAR sensors (RT_4104_01 through RT_4104_03)				
	3. Confirmation of air loft fan operation (FAN_4105_01, through				
	4. Confirmation of FAN operation indicator (FSL_4105_01				
	5. Confirmation of controller log of lamp loft temperatures				
	6. Confirmation lamp loft temperature remains below 35 °C				
	temperatures are maintained at or below 21°C)				
Irrigation	$MPP_{-}HPC1 = Irright an ION temperature alarm states$	05/02/09		0.05	Passed
Control Loop 4106	1 Confirmation of controller log of nutrient flow sensor	03/02/03		0.05	1 83360
	(FT 4106 01)				
	2 Confirmation of nutrient flow rates greater than 0.2 L per				
	minute				
Ηα	MPP-HPC1	10/03/09		0.05	Passed
Control Loop 4107	1. Confirmation of pH sensor log AT 4107 01 at the controller				
	2. Confirmation of controller read of acid and base tank low level				
	sensors (LSL_4107_01 and LSL_4107_02)				
	3. Confirmation of controller activation of acid and base injection				
	solenoids by the controller (SV_4107_01 and SV_4107_02)				
	4. Induction of hi/low pH alarms				
EC	MPP-HPC1 –EC – CT	10/03/09		0.05	Passed
Control loop 4108	 Confirmation of EC sensor log AT_4108_01 at the controller 				
	Confirmation of controller read of stock A and stock B tank low				
	level sensors (LSL_4108_01 and LSL_4108_02)				
	3. Confirmation of controller activation of stock injection				
	solenoids by the controller (SV_4108_01 and SV_4108_02)				
	4. Induction of hi/low EC alarms			_	<u> </u>
Condensate Collection	MPP-HPC1 – Condensate – CT	23/04/09	to	1	Passed
Control Loop 4110	Activation of condensate drain procedure by the controller	29/04/09			

Growing Volume Temperature	MPP-HPC1 –Temperature – CT	23/04/09	to	7	Failed
and Humidity Control	Diurnal profile tests in temperature/humidity control (demand	29/04/09			
Control Loop 4112	vs. actual). To be performed during crop test				
CO ₂ compensation control	MPP-HPC1 –CO2 – CT	23/04/09	to	7	Passed
Control Loop 4113	Profile tests of CO ₂ control by the controller	29/04/09			
Crop Test	MPP-HPC1 – Crop– OT	23/04/09	to	7	Passed
	 Crop trial with lettuce in batch culture under nominal 	29/04/09			
	conditions – approximately 7 days in duration				
	2. Collection of NCER data				
Collection of evapo-transpiration data					
	Collection of T/RH data				

3 Exterior Air Lock Door Functional Testing

3.1 Procedure ID: MPP-HPC1-EXTERIOR_AIRLOCK_DOOR - FT

3.2 Introduction

The aim of this test is to demonstrate the operation of the exterior air-lock doors and confirm activation of the door open LED indicator when the door is open. The test is also used to inspect the gasket seal of the exterior air lock door for deformation.

3.3 Acronyms used in this test plan procedure

LED – Light Emitting Diode

3.4 Applicable documents

Technical Annex to SOW ref: TEC-MCT/2005/3466/In/CP TN 85.71 including P&ID

3.5 Acceptance/rejection criteria

General

The test is considered successful when the following criteria are met

Acceptance criteria

- The two exterior air lock doors may be opened and securely closed by an operator without excessive force
- The two door ajar contact sensors (upper and lower) positioned on each of the two air locks are each, independently activated, when the door latches are not properly secured.

Rejection criteria

The test shall be repeated if the data looks doubtful or failed completely or if any of the conditions outlined above are not met.

3.6 Environmental requirements

Normal ambient conditions in temperature, pressure and gas composition are sufficient. The chamber exterior air lock doors shall be opened in this test so no special environment control of the interior of the chamber is required.

TECHNICAL NOTE 96.5

3.7 Safety aspects

No special safety risks have been identified for this test.

3.8 Test set-up

Verification prior to test performance: confirmation of settings in the Table 1.

Sub-system	Components concerned	Tag (P&ID)	Status at start	Remark/setpoint
Air Lock	Interior Air Lock Doors (A&C)	N/A	Closed	
Air Lock	Exterior Air Lock Doors (A&C)	N/A	Closed	

3.9 Test As-Run Procedure

Date: Time:	Date: 06/02/2009 Time: 16:00			Test Engineer/operator: Michael Stasiak MPP Supervision: Arnaud Fossen		
Seq. Nb.	Description	Required/Nominal	Measured/ calculated	Remarks/Calculation	Pass (P)/ Fail (F)	
1	Exterior Air Lock Door A is unlatched around the perimeter and opened fully			AF not present for Door A demonstration but checked a posteriori	Р	
2	Confirm activation of LED (ZI_4100_01) indicator to indicate exterior door A is open	RED LED (ZI_4100_01) indicates door open	RED LED on		Р	
3	Close exterior air lock door and secure latches along the door perimeter				Р	
4	Ensure de-activation of the LED (ZI_4100_01) indicator on the exterior air lock door A to show door is closed	GREEN LED (ZI_4100_01) indicates door Closed	GREEN LED on		Р	

18

5	Unlatch exterior air lock door A and open fully. Confirm LED indicates door open.	RED LED (ZI_4100_01) indicates door Open	RED LED on		P
6	Demonstration of door C opening			AF present for this check	Р
7	Exterior Air Lock Door C is unlatched around the perimeter and opened fully				Р
8	Confirm activation of LED (ZI_4101_01) indicator showing exterior door C is open	RED LED (ZI_4101_01) indicates door open	RED LED on		Р
9	Close exterior air lock door C and secure latches along the door perimeter				Р
10	Ensure de-activation of the LED (ZI_4101_01) indicator	GREEN LED (ZI_4101_01) indicates door Closed	GREEN LED on		Р
11	Unlatch exterior air lock door C and open fully. Confirm LED (ZI_4101_01) indicates door open.	RED LED (ZI_4100_01) indicates door Open	RED LED on		Р

3.10 Conclusions

Doors function as required

3.11 Deviations

Seq.	Description of the modification	Justification
Nb.		

4 Interior Air Lock Door Functional Testing

4.1 Procedure ID: MPP-HPC1-INTERIOR_AIRLOCK_DOOR - FT

4.2 Introduction

The aim of this test is to demonstrate the operation of the interior air-lock doors and the movement of growing troughs through the glove boxes.

4.3 Acronyms used in this test plan procedure None

4.4 Applicable documents

Technical Annex to SOW ref: TEC-MCT/2005/3466/In/CP TN 85.71 including P&ID

4.5 Acceptance/rejection criteria

General

The test is considered successful when the following conditions are met

Acceptance criteria

- 1. The two interior air lock doors may be opened and securely closed by an operator without excessive force or physical exertion by the operator
- 2. The connection/removal of growing trays on the main conveyer system can be demonstrated and that connection can be made without excessive physical exertion by the operator.

Rejection criteria

The test shall be repeated if the any of the conditions outlined above are not met.

4.6 Environmental requirements

Normal ambient conditions in temperature, pressure and gas composition are sufficient. The chamber exterior air lock doors shall be closed in this test but no special environment control of the interior of the chamber is required.

TECHNICAL NOTE 96.5

4.7 Safety aspects

No special safety risks have been identified for this test.

4.8 Test set-up

Ancillary Equipment Required for Test

- 1. Latex or Vinyl gloves to fit operator's hand
- 2. Conveyer system bridges placed on floor of air locks (supplied)
- 3. Tray connector and spacer bars (supplied)
- 4. One growing tray placed on upper support of Airlock A, one growing tray placed in Chamber A, and one growing tray placed in Chamber C (supplied)

Verification prior to test performance: confirmation of settings in the Table 1.

Sub-system	Components concerned	Tag (P&ID)	Status at start	Remark/setpoint
Air Lock	Interior Air Lock Doors (A&C)	N/A	Closed	
Air Lock	Exterior Air Lock Doors (A&C)	N/A	Closed	Air lock C should have two trays in position to demonstrate their proper removal
Irrigation	Irrigation pump	GP_4106_01	OFF	During this procedure water must not be flowing into the growing trays

4.9 Test As-Run Procedure

Date:	Date: 06/02/2009			Test Engineer/operator: Michael Stasiak		
Time: 16:10		MPP Supervision: Arnaud Fossen				
Seq.	Description	Required/	Measured/	Remarks/Calculation	Pass (P)	
Nb.		Nominal	calculated		Fail (F)	
1	While wearing vinyl or latex gloves, place hands			AF not present for door A	Р	
	inside the two Neoprene gloves of air lock A			demonstration		
2	Open the magnetic seals				Р	
3	Using the polypropylene lift rod, set the door				Р	
	supports onto the upper support pegs					

4	Move the tray located on the upper tray close to	Р
	the tray already positioned within the main	
	chamber and connect with two spacer bars	
5	Push the tray forward until the tray is centred on	Р
	the irrigation spout inside the chamber	
6	Lower the interior door back into position	Р
7	Carefully secure the magnetic seals	Р
8	Remove hands from airlock gloves	Р
9	Move to Airlock C	Р
10	While wearing vinyl or latex gloves, place hands	Р
	inside the two Neoprene gloves of air lock C	
11	Open the magnetic seals	Р
12	Using the polypropylene lift rod, set the door	Р
	supports onto the upper support pegs	
13	Pull the tray located inside the chamber forward	Р
	and onto the upper tray support and remove the	
	two spacer bars	
14	Push the remaining tray inside the chamber	Р
	forward until the tray is centred on the irrigation	
	spout inside the chamber	
15	Lower the interior door back into position	Р
16	Carefully secure the magnetic seals	Р
17	Remove hands from airlock gloves	Р

4.10 Conclusions

Inner doors function as required

4.11 Deviations

Seq.	Description of the modification	Justification
Nb.		

5 Air Lock Purge System Functional Testing

5.1 Procedure ID: MPP-HPC1-AIRLOCK_PURGE - FT

5.2 Introduction

The aim of this test is to demonstrate and test the operation of the air lock purge system, including the over-pressure passive relief valves, pressure transducers, pressure switches and purge in/vent solenoids of both air locks A and C.

5.3 Acronyms used in this test plan procedure None

5.4 Applicable documents

Technical Annex to SOW ref: TEC-MCT/2005/3466/In/CP TN 85.71 including P&ID

5.5 Data Log File Names:

Not Applicable

5.6 Parts Tested (P&ID Reference):

- SV_4102_01, SV_4102_02, SV_4103_01, SV_4103_02
- HV_4102_01 HV_4103_01
- PS_4102_01, PS_4103_01
- PT_4102_01, PT_4103_01
- RV_4114_01, FS_4114_01

5.7 Acceptance/rejection criteria

General

The test is considered successful when the following conditions are met

23

TECHNICAL NOTE 96.5

Acceptance criteria

Proper functioning of the following parts is demonstrated, according to the conditions noted;

- 1. Air lock inlet and purge solenoids SV_4102_01, SV_4102_02, SV_4103_01, SV_4103_02 open when charged and re-main closed when no current is applied
- 2. Air lock pressure switches PS_4102_01, PS_4103_01 are activated when an over pressure air stream is applied to the inlet port of each sensor

Rejection criteria

The test shall be repeated if any of the conditions outlined above are not met.

5.8 Environmental requirements

Normal ambient conditions in temperature, pressure and gas composition are sufficient. The chamber exterior and interior air lock doors shall be closed in this test but no special environment control of the interior of the chamber is required.

5.9 Safety aspects

No special safety risks have been identified for this test.

5.10 Test set-up

Ancillary Equipment Required for Test:

- 1. Air source (eg. air pump or compressor)
- 2. 1 metre of teflon or polypropylene tubing
- 3. 500 mL Erlenmeyer Flask containing water
- 4. Manometer manifold (supplied by UoG for the test)

Verification prior to test performance: confirmation of settings in the Table 1.

Sub-system	Components concerned	Tag (P&ID)	Status at start	Remark/setpoint
Air Lock	Interior Air Lock Doors (A&C)	N/A	Closed	
Air Lock	Exterior Air Lock Doors (A&C)	N/A	Open	Airlock doors are open to allow connection of tubing to inlet and outlet ports of the purge system
Air Lock	Purge Inlet Solenoids	SV_4102_01	Closed	
	(Airlock A and C)	SV_4103_01		

Air Lock	Purge Vent Solenoids (Airlock A and C)	SV_4102_02 SV_4103_02	Closed	
Air Lock	Pressure Switches (Airlock A and C)	PS_4102_0 PS_4103_01	Not Activated	
Air Lock	Pressure Transducers (Airlock A and C)	PT_4102_01 PT_4103_01	Reading ambient	Nominal sensor functioning is all that is required for this test

5.11 Test As-Run Procedure

Date:	04/02/09		Test Engineer/operator: Michael Stasiak			
Time:	14:00		MPP Supervision: Raul Moyano			
Seq.	Description	Required/	Measured/	Remarks/Calculation	Pass (P)/ Fail (F)	
Nb.		Nominal	calculated			
1	Set the Purge Solenoids positioned in air	SV_4102_01	All	Set air lock A and C purge valves	Р	
	locks A and C to 'manual on' using the	SV_4102_02	valves	to manual open in the Argus		
	Argus Control System.	SV_4103_01	open in	control system. Purge valves		
	(SV 4102 01, SV 4102 02,	SV 4103 02	control	may need to be operated		
	SV 4103 01, SV 4103 02)	all OPEN	system	individually if air pump supply		
				volume is low		
2	Connect an air pump to the purge gas				Р	
	inlet line on the external solenoid panel					
	and turn on the pump					
3	Connect one end of the tubing to the			Air bubbles should form at the	Р	
	purge inlet (bottom) on the interior of			end of the tubing, indicating		
	airlock A, and place the other end in the			positive flow through the solenoid		
	flask of water			valve		
4	Connect on end of the tubing to the purge			Air bubbles should form at the	Р	
	vent (top) on the interior of airlock A. and			end of the tubing, indicating		
	place the other end in the flask of water			positive flow through the solenoid		
	p			valve		
5	Connect on end of the tubing to the purge			Air bubbles should form at the	Р	
	inlet (bottom) on the interior of airlock B,			end of the tubing, indicating		

25

	and place the other end in the flask of water		positive flow through the solenoid valve	
6	Connect on end of the tubing to the purge vent (top) on the interior of airlock B, and place the other end in the flask of water		Air bubbles should form at the end of the tubing, indicating positive flow through the solenoid valve	Ρ
7	Using the Argus control system, go to the input display for sensor PS_4102_01			Р
8	Connect the tubing to the inlet of the Air Lock Pressure Switch in air lock A and gently blow air into the tube using the air pump		The signal to the Argus system should change from 0V to + 5V when the switch is activated. The Argus alarm will sound. See deviations table 5.13	Ρ
9	Using the Argus control system, go to the input display for sensor PS_4103_0			Р
10	Connect the tubing to the inlet of the Air Lock Pressure Switch in air lock C and gently blow air into the tube using the air pump		The signal to the Argus system should change from 0V to + 5V when the switch is activated. The Argus alarm will sound. See deviations table 5.13	Ρ
11	Using the Argus system, observe and record the pressure sensor readings for air locks A and C	<u>98.29</u> A <u>98.12</u> C	Sensors should read between 95 and 105 kPa	Ρ

12	Disconnect the Overpressure Sensor Manifold from the chamber at the Swagelok fitting.				Р
13	Connect the air pump and Overpressure Sensor Manifold (including RV_4114_01 and FS_4114_01) to the Manometer manifold and open the needle valve fully	RV_4114_01 FS_4114_01	Pump connected <u>needle</u> open		Р
14	Turn on the air pump.			MELiSSA facility nitrogen supply was used as the air pump pressure was inconsistent	N/A
15	Slowly close the needle valve to increase pressure to the Overpressure Sensor Manifold until a venting has occured. Monitor the Argus Control System 'Vent Detect' Parameter on the HPC System Overview Screen.		64 Initial detect # 66 final detect #	The pressure on the manometer will increase until a vent has occurred. Vent Detect counter will increase by one for each simulated venting that has occurred. <i>Venting occurred at a pressure of</i> 1.3 kPa (13 mb)	Ρ
16	Turn off the pump, disconnect the Manometer manifold, and reconnect the Overpressure Sensor Manifold to the HPC				Р

5.12 Conclusions

Valves, pressure sensors and Overpressure Sensor Manifold all function as required

5.13 Deviations

Seq.	Description of the modification	Justification
Nb.		

27

1	8 & 10	Signal changes from +5 to 0V when activated rather than 0 to +5 as	No changes were needed as the specification in the
		indicated in the method	original test procedure was incorrect in stating 0 to +5V
			rather than +5V to 0 (it makes no difference).

6 Lighting Sub-System Functional Testing

6.1 Procedure ID: MPP-HPC1-LIGHTING-FT

6.2 Introduction

The aim of this test is to demonstrate the proper functioning of the chamber lighting system. This includes demonstration of proper functioning of the lamp loft fans, temperature sensors, air flow indicators and the relays and contactors for illumination of the 2 HPS lamp strings and the MH lamp string. Testing of the functioning of factory calibrated PAR sensors is also performed.

6.3 Acronyms used in this test plan procedure

LHPS – High Pressure Sodium lamp LMH – Metal Halide lamp PAR – Photosynthetically Active Radiation

6.4 Applicable documents Technical Annex to SOW ref: TEC-MCT/2005/3466/In/CP

Technical Annex to SOW ref: TEC-MC1/2005/3466/In/CF TN 85.71 including P&ID

6.5 Data Log File Name:

MPP_HPC_-LIGHTING_FT.txt

6.6 Parts Tested (P&ID Reference):

- TT_4105_01, TT_4105_02, TT_4105_03 (lamp loft temperature transducers)
- FAN_4105_01, FAN_4105_02, FAN_4105_03 (lamp loft cooling fans)
- FSL_4105_01, FSL_4105_02, FSL_4105_03 (lamp loft air flow sensors)
- RT_4104_01, RT_4104_02, RT_4104_03 (PAR sensors)
- IY_4104_01, IY_4104_02, IY_4104_03 (lamp string relays and contactors)
- LHPS_4104_01 through _06 (HPS Lamps)
- LMH_4104_01 through _03 (MH Lamps)

29

6.7 Acceptance/rejection criteria

General

The test shall be repeated if the data acquisition looks doubtful or failed completely

The test is considered successful when the following conditions are met

Acceptance criteria

- The lamps in string HPSa illuminate when activated by the controller and yield an average PAR level of not less than 300 μE at crop height (30 cm above bench) when the sensor is placed in the horizontal centre of the reflector for each lamp in string HPSa
- The lamps in string HPSb illuminate when activated by the controller and yield an average PAR level of not less than 300 μE at crop height (30 cm above bench) when the sensor is placed in the horizontal centre of the reflector for each lamp in string HPSb
- The lamps in string MH illuminate when activated by the controller and yield an average PAR level of not less than 300 µE at crop height (30 cm above bench) when the sensor is placed in the horizontal centre of the reflector for each lamp in string MH
- 4. The lamp loft fans all remain functional during periods of illumination
- 5. All alarms, listed in the Test As-Run Procedure, are activated
- 6. The temperature in any of the lamp loft does not exceed 40 C at any time during lamp operation under normal external temperature conditions

Rejection criteria

The test is considered to have failed under the following conditions;

- 1. When any of the conditions stated above are not met
- 2. When any of the data acquisition looks doubtful or failed completely

6.8 Environmental requirements

Normal ambient conditions in temperature, pressure and gas composition are sufficient. The chamber air lock doors shall remain open during this test (i.e. chamber not sealed) so as to allow the test engineer/operator the ability to move PAR sensors to the required positions. Air temperature with the MPP must be maintained between 19C and 21C during the entire test period.

6.9 Safety aspects

The operator shall take care when entering the chamber to take PAR measurements. The operator taking measurements should weigh less than 100 Kg.

All growing trays but three should be removed from the chamber to avoid a trip hazard when moving about the chamber interior.

The lower air flow baffles should not be in position as they will not support any operator's weight.

Care should be taken to avoid stepping on the hydroponic feed lines.

The operator entering the chamber shall be aware of the air flow return duct (hole) in the chamber floor. Care must be taken not to trip or fall in.

Because the operator will be inside the chamber, the air lock doors must remain open during this test.

6.10 Test set-up

Ancillary Equipment Required for Test:

- PAR sensors installed in chamber (RT_4104_01, RT_4104_02, RT_4104_3)
- step ladder to gain entry into the HPC
- anemometer

Verification prior to test performance: confirmation of settings in the Table 1.

t enneaden phot te		ige in alle rable h		
Sub-system	Components concerned	Tag (P&ID)	Status at start	Remark/setpoint
Lighting System	Lamp String HPSa , including	IY_4104_01	Off	
	lamps:			
	LHPS_4104_01 (HPS Lamp Aa)			
	LHPS_4104_02 (HPS Lamp Ba)			
	LHPS_4104_03 (HPS Lamp Ca)			
	Lamp String HPSb, including lamps:	IY_4104_02	Off	
	LHPS_4104_04 (HPS Lamp Ab)			
	LHPS_4104_05 (HPS Lamp Bb)			
	LHPS_4104_06 (HPS Lamp Cb)			
	Lamp String MH, including lamps:	IY_4104_03	Off	
	LMH_4104_01 (MH Lamp A)			
	LMH_4104_02 (MH Lamp B)			
	LMH 4104 03 (MH Lamp C)			

PAR Sensor A	RT_4104_01	Logging	Should initially read 0 uE
PAR Sensor B	RT_4104_02	Logging	Should initially read 0 uE
PAR Sensor C	RT_4104_03	Logging	Should initially read 0 uE
Loft Fans A	FAN_4105_01 and FAN_4105_02	Off	Both fans in loft A should be off
Loft Fans B	FAN_4105_03 and FAN_4105_04	Off	Both fans in loft B should be off
Loft Fans C	FAN_4105_05 and FAN_4105_06	Off	Both fans in loft C should be off
Loft Temperature Sensor (Loft T – A)	TT_4105_01	Logging	Should read ambient temperature
Loft Temperature Sensor (Loft T – B)	TT_4105_02	Logging	Should read ambient temperature
Loft Temperature Sensor (Loft T – C)	TT_4105_03	Logging	Should read ambient temperature
Loft Air Flow Sensor (Flow – A)	FSL_4105_01	Logging	Should indicate no air flow in loft
Loft Air Flow Sensor (Flow – B)	FSL_4105_02	Logging	Should indicate no air flow in loft
Loft Air Flow Sensor (Flow – C)	FSL_4105_03	Logging	Should indicate no air flow in loft

6.11 Test As-Run Procedure

Date:	09/03/09							Test Enginee	er/operator: M. Stasiak	
Time:	5:15 pm							MPP Supervi	sion: R. Moyano	
Seq.	Descriptio	n					Required/	Measured/	Remarks/Calculation	Pass (P)/ Fail (F)
Nb.							Nominal	calculated		
1	Position	and	centre	PAR	Sensor	Α	300	397		Р

2	 (RT_4104_01) underneath the HPS lamp reflector that is member of string HPSa in module A and fix it at a height of approximately 30 cm above growing tray height Position and centre PAR sensor A (RT_4104_02) underneath the HPS lamp reflector that is member of string HPSa in module B and fix it at a height of approximately 	300	396		Р
3	30 cm above growing tray height Position and centre PAR sensor (RT 4104 03)	300	369		P
5	underneath the HPS lamp reflector that is member of string HPSa in module C and fix it at a height of approximately 30 cm above growing tray height	500	505		
4	Operator confirms operation of the fans by taking readings at the outlet (back) side of the fans with a hand-held anomemeter. All fans should yield a reading of greater than 0.10 m/s	Anemometer readings from each fan > 0.10 m/s	A B	Anemometer was unavailable at UAB. Raul Moyano confirmed the functioning and significant air flow velocity of each fan.	P
5	In the Argus control system, confirm air flow indicators in each lamp loft (FSL_4105_01, _02 and _03)	FSL_4105_01 , _02 and _03 indicate air flow	Sensor reading positive		Ρ
6	Confirm that temperature sensors in each lamp loft read ambient temperatures (TT_4105_01, _02 and _03)	TT_4105_01, _02 and _03 read AMBIENT	Loft sesnsors ambient T		P
7	Using the Argus control system, activate lamp	LHPS_4104_	Strings		P

	string HPSa	01, _03 and	activated in		
0	After a pariad of 10 minutes, confirm readings of		Argus		
8	After a period of 10 minutes, confirm readings of	R1_4104_01,	See below		P
	PAR sensors A-C (RI_4104_01, _02 and _03)	_02 and _03			
	each read above 300 uE corresponding to	read > 300			
	Illumination of lamp string HPSa	UE			
9	Deactivate lamp string HPSa				P
10	Confirm all air loft fans remain running				P
11	Position and centre PAR sensor (RT_4104_01)	300	389		P
	under the HPS lamp reflector that is member of				
	string HPSb in module A				
12	Position and centre PAR sensor (RT_4104_02)	300	396		P
	under the HPS lamp reflector that is member of				
	string HPSb in module B				
13	Position and centre PAR sensor (RT_4104_03)	300	367		Р
	under the HPS lamp reflector that is member of				
	string HPSb in module C				
14	Activate lamp string HPSb				Р
15	Confirm continued operation of all lamp loft fans				Р
16	After a warm-up period of 10 minutes, confirm				Р
	and record readings of PAR sensors				
	corresponding to illumination of HPSb				
17	Deactivate lamp string HPSb				Р
18	Confirm all air loft fans remain running				Р
19	Position and centre PAR sensor (RT_4104_01)	140	152	See deviations table 6.13	Р
	underneath the MH lamp reflector that is				
	member of string MH in module A				
20	Position and centre PAR sensor (RT 4104 02)	140	175	See deviations table 6.13	Р
	underneath the MH lamp reflector that is				
	member of string MH in module B				
21	Position and centre PAR sensor (RT_4104_03)	140	170	See deviations table 6.13	Р
	underneath the MH lamp reflector that is				
	member of string MH in module C				

22	Activate lamp string MH				Р
23	Confirm continued operation of all lamp loft fans				Р
24	Confirm readings of PAR sensors corresponding				Р
	to illumination of MH				
25	Activate lamp string HPSa				Р
26	Activate lamp string HPSb				Р
27	Activate lamp string MH				Р
28	Confirm continued operation of all lamp loft fans				Р
29	Confirm log of lamp loft temperature sensors				Р
	Loft-T A-C, record initial values				
			25.5		
			A		
			26.0		
			В		
			25.1		
			C		_
30	Allow lamps to run for 1 hour				P
31	To test the temperature override control; lower				P
	the temperature limits on the control system to				
	invoke a lamp loft high temperature alarm				
	condition. Ensure the lamps shut off.				
32	Confirm continued operation of lamp loft fans				Р
33	Turn off lamps and let cool for 15 minutes				Р
34	Reset lamp loft temperature limits and reactivate				P
	lamps				
35	Controller instructs lamp strings (HPSa, HPSb,	14 hours	> 14 h	Started March 10, 2009	P
	and MH) to operate for an extended period.	(nominal)		at 6:00 AM	
36	After this period confirm shut-off of all lamp			Fans may continue to run	P
	strings.			if the lamp loft	
				temperature is above the	
				set point.	

35

6.12 Conclusions

Lamps, fans, alarms and PAR sensors function as required.

6.13 Deviations

Seq	Description of the modification	Justification
N II-		
IND.		
19,	Lamps in these tests differed from the other two lamp tests and acceptance	The differences in wattage and spectra of the MH
20,	criteria is thus changed to:	compared to the HPS were not taken into account in the
21		initial criteria.
	The lamps in string MH illuminate when activated by the controller and yield an average PAR level of not less than 140 μ E at crop height (30 cm above bench) when the sensor is placed in the horizontal centre of the reflector for each lamp in string MH	MH = 400 watts and ~24% conversion efficiency HPS = 600 watts and ~ 30% conversion efficiency

7 Air Circulation Fan Functional Testing

7.1 Procedure ID: MPP-HPC1 – Blower_Assembly – FT

7.2 Introduction

The aim of this test is to demonstrate the proper functioning of the centrifugal blower, VFD motor, pulley and belt drive for the motor, rotary feed through shaft and by consequence, the chamber shell ducting and louvers.

The test begins with the VFD motor set to 50 Hz which will enable the main centrifugal blower to run at full speed. After equilibration and air speed measurements have been recorded by the Argus Control system, the speed controller is reduced incrementally to show function at a range of speeds. The test concludes with a demonstration of the ramp-up and ramp-down capability in starting or shutting off of the motor of the main centrifugal blower.

7.3 Acronyms used in the test

VFD – Variable Frequency Drive (of the motor driving the main centrifugal blower)

7.4 Applicable documents

Technical Annex to SOW ref: TEC-MCT/2005/3466/In/CP TN 85.71 including P&ID VFD Operation Manual Motor Operation Manual

7.5 Data Log File Name: MPP_HPC1__AIR_CIRCULATION_FT.txt

7.6 Parts Tested (P&ID Reference):

- BLWR_4111_01 (Air Circulation Fan)
- MVFD_4111_01 (Air Circulation Motor)
- FT_4111_01 (Air Velocity Sensor)

37

7.7 Acceptance/rejection criteria

General

The test shall be repeated if the data acquisition looks doubtful or failed completely

The test is considered successful when the following conditions are met

Acceptance criteria

The functional tests of the air handling sub-system components are deemed acceptable when;

- 1. When the VFD successfully ramps from 0 Hz to 50 Hz without damage
- 2. When the VFD successfully ramps down from 50 Hz to 0 Hz without damage
- 3. When sufficient air flow is measured by FT_4111_01

Rejection criteria

The test is considered to have failed under the following conditions;

- 1. When any of the conditions stated above are not met
- 2. When any of the data acquisition looks doubtful or failed completely

7.8 Environmental requirements

Normal ambient conditions in temperature, pressure and gas composition are sufficient. The chamber air lock doors shall remain open during this test (i.e. chamber not sealed).

7.9 Safety aspects

When the motor and pulley are in operation under the chamber belly, the operator shall take care to get items caught in the fan belt and pulley assembly. Yellow caution tape should surround the perimeter of module C.

7.10 Test set-up

All growing trays and bottom air louvres must be in place for this test.

Verification prior to test performance: confirmation of settings in the Table 1.

Sub-system	Components concerned	Tag (P&ID)	Status at start	Remark/setpoint
Air handling unit	Main centrifugal blower		Idle	
	VFD Motor		Off	

7.11 Test As-Run Procedure

Step by step description of the operations performance

38

Date:	11/03/09		Test Engine	er/operator: M. Stasiak	
Time:	13:46		MPP Superv	vision: A. Fossen	
Seq.	Description	Required	Measured/	Remarks/Calculation	Pass (P)
Nb.		/ Nominal	calculated		Fail (F)
1	Visually inspect the rotary feed-through shaft				P
	and pulley system to confirm that there is no				
	deflection in the assembly at system rest				
2	Activate the VFD and set to 50 Hz. Record air		26.12 m/s		P
	flow of the internal air velocity sensor				
	(FT_4111_01) as indicated on the Argus control				
	system overview screen				
3	Activate the VFD and set to 40 Hz. Record air		20.70 m/s		Р
	flow of the internal air velocity sensor				
	(FT_4111_01) as indicated on the Argus control				
	system overview screen				
	Activate the VFD and set to 30 Hz. Record air		15.04 m/s		P
	flow of the internal air velocity sensor				
	(FT 4111 01) as indicated on the Argus control				
	system overview screen				
	Activate the VFD and set to 20 Hz. Record air		9.33 m/s		Р
	flow of the internal air velocity sensor				
	(FT 4111 01) as indicated on the Argus control				
	system overview screen				
	Activate the VFD and set to 10 Hz. Record air		4.10 m/s		Р
1	flow of the internal air velocity sensor				
1	(FT_4111_01) as indicated on the Argus control				
	system overview screen				
16	Return the VFD to 0 Hz, main centrifugal blower		0 m/s		Р
	remains idle				

7.12 Conclusions

Air circulation fan functions at the frequency setpoints indicated.

This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization Memorandum of Understanding 19071/05/NL/CP

39

TECHNICAL NOTE 96.5

7.13 Deviations

Seq	Description of the modification	Justification
Nb.		

8 Gas Analysis System Functional Testing

8.1 Procedure ID: MPP-HPC1-GAS_ANALYSIS – FT

8.2 Introduction

The aim of this test is to demonstrate and test the operation of the gas analysis system components including functioning of the IRGA for CO_2 , O_2 analyzer, mass flow controller for CO_2 injection, manual injection over-ride value and the CO_2 injection line solenoid.

8.3 Acronyms used in this test plan procedure

IRGA – InfraRed Gas Analyzer for CO_2 PO2 – Paramagnetic Analyzer for O_2

8.4 Applicable documents Technical Annex to SOW ref: TEC-MCT/2005/3466/In/CP TN 85.71 including P&ID

8.5 Data Log File Names:

MPP_HPC1__GAS ANALYSIS_FT.txt

8.6 Parts Tested (P&ID Reference):

- 1. AT_4113_01 (CO₂ Analyzer/IRGA)
- 2. AT_4113_02 (O₂ Sensor)
- 3. FC_4113_01 (Mass Flow Controller for CO₂)
- 4. SV_4113_01 (CO₂ injection line solenoid)
- 5. HV_4113_01 (CO₂ injection line manual over-ride valve)

8.7 Acceptance/rejection criteria

General

The test shall be repeated if the data acquisition looks doubtful or failed completely

41

TECHNICAL NOTE 96.5

The test is considered successful when the following conditions are met:

Acceptance criteria

Proper functioning of the following parts is demonstrated, according to the conditions noted;

- 1. The IRGA (AT_4113_01) reads ambient CO2 (300 500 ppm) concentrations prior to test
- 2. The IRGA (AT_4113_01) responds to automated CO2 injection by the Argus control system at a setpoint of 1500 ppm
- 3. The PO2 (AT_4113_02) reads ambient conditions prior to and during the test
- 4. The Mass Flow Controller for CO2 is automatically controllable to a set point of 200 mL/min and flow of CO2 through the MFC is confirmed
- 5. Proper functioning of the CO2 injection line solenoid (SV_4113_01) is demonstrated

Rejection criteria

The test shall be repeated if the data acquisition looks doubtful or failed completely or if any of the conditions outlined in Section 2.2 are not met.

8.8 Environmental requirements

Normal ambient conditions in temperature, pressure and gas composition are sufficient. The chamber exterior and interior air lock doors shall be closed in this test but no special environment control of the interior of the chamber is required.

8.9 Safety aspects

Carbon dioxide and nitrogen are asphyxiants. Care must be used when employing this gas in its pure form.

8.10 Test set-up

Ancillary Equipment Required for Test:

- 1. Pressure regulated and adjustable (0 120 kPa) 99.99% (or better) CO₂ gas source with to be connected to the CO₂ injection line inlet solenoid (SV_4113_01)
- 2. Calibrated air source (certified with levels according to anayzer manufacturer instructions) and regulator (0 120 kPa delivery) to be connected to the CO₂ analyzer when required for span calibration
- 3. Calibrated air source of 99.99 or better purity Nitrogen with a regulated supply to be connected to the CO₂ analyzer when required for zero calibration

Verification prior to test performance: confirmation of settings in the Table 1.

42

Sub-system	Components concerned	Tag (P&ID)	Status at start	Remark/setpoint
Gas Analysis	IRGA	AT_4113_01	Connected to HPC1 through dedicated inlet and outlet lines. Analyzer is turned on and operational	Confirm air flow through analyzer and operation of analyzer sampling pump. Analyzer sample return is back to the chamber growing volume to create a closed sampling system
Gas Analysis	PO ₂	AT_4113_02	Integrated with CO ₂ analyzer	An O_2 analyzer was not available for this test. An O_2 analyzer was needed in order to verify the measurement of the PO ₂
Gas Analysis	Mass Flow Controller for CO ₂	FC_4113_01	Closed (0 L/min flow)	
Gas Analysis	CO ₂ injection line solenoid	SV_4113_01	Closed	
Gas Analysis	CO ₂ injection line manual over-Ride ball valve	HV_4113_01	Closed	No CO ₂ gas supplied to inlet solenoid at start of test
Air Lock	Exterior Air Lock Doors	N/A	Closed	
Air Lock	Interior Air Lock Doors	N/A	Open	
Air Circulation	Main Blower and VFD	BLWR_4111_01, MVFD 4111 01	Running at optimal speed (TBD)	

8.11 Test As-Run Procedure

Date: 11/03/09	Test Engineer/operator: M. Stasiak
Time: 13:55	MPP Supervision: A. Fossen

43

Seq.	Description	Required/	Measured/	Remarks/Calculation	Pass (P)
IND.		Nominai	calculated		Fall (F)
1	Calibrate the IRGA/PO ₂ analyzer			See anayzer operating manual for calibration instructions	N/A
				Sensor was factory calibrated – no local calibration was performed as calibration standards were unavailable	
2	The mass flow controller is set to delivery CO ₂ at a rate of 200 mL/min using the Argus Control System	FC_4113_01 is set to deliver CO_2 at ~200 mL/min	MFC set to 200	See MFC operating manual for manual setting of MFC	Р
3	Set the Argus control system CO ₂ demand to 1500 ppm	SV_4113_01 is OPEN	1500 setpoint on Argus	Initial CO ₂ concentration: 497 ppm	Р
4	Open the CO ₂ line delivery pressure of 110 kPa	CO ₂ tank regulator delivery at 110 kPa	CO_2 regulator: 1.9 bar CO_2 flow: 193 ml/min		Р
5	Open the CO ₂ injection (SV_4113_01) override valve	SV_4113_01	Valve opened		Р
6	Monitor CO ₂ concentrations on the Argus control system AND the IRGA and ensure that both are reading approximately the same value. CO ₂ levels should rise within the HPC	AT_4113_01 indicating rising CO ₂ AT_4113_02 reading ambient	CO2 increasing O2 sensor unavailable	The Argus controller will record CO ₂ concentration An initial setpoint of 800 ppm was used and allowed to plateau, followed by setpoint change to 1500. This change to the method was requested and	Р
	read ambient concentrations	(~21%)		approved by A. Fossen	
7	[CO ₂] should reach 1500 and automated injection discontinues			$[CO_2]$ levels may somewhat surpass the 1500 limit as internal mixing and analyzer lag times limit response. Without active CO_2 consumption and in	Ρ

			the absence of major leaks, [CO ₂] will remain high	
8	On the Argus control system, return the CO_2 control to 'Manual off', close the CO_2 injection override valve (SV_4113_01)			Ρ

8.12 Conclusions

The gas analysis system functioned as required.

8.13 Deviations

Seq. Nb.	Description of the modification	Justification

TECHNICAL NOTE 96.5

9 Chamber Shell Integrity Leakage Test

9.1 MPP-HPC1-LEAKAGE-FT

9.2 Introduction

The aim of this test is to demonstrate the integrity of the chamber shell after assembly. CO_2 is injected into the chamber in a closed and idle configuration (all sub-systems off, main centrifugal blower excepted) to a set-point of 1500 ppm. CO_2 is allowed to passively decay through the chamber shell over a 48 hour period. The rate of leakage is calculated as the slope of a tangent to a 24 hour CO_2 curve, expressed as % Leakage of CO_2 (relative to initial value) per day.

9.3 Acronyms used in this test plan procedure

MFC – Mass Flow Controller IRGA – Infra-Red Gas Analyzer for CO₂ (0-6000 ppm)

9.4 Applicable documents

Technical Annex to SOW ref: TEC-MCT/2005/3466/In/CP TN 85.71 including P&ID

9.5 Data Log File Name:

MPP_HPC1__LEAKAGE_FT.txt

9.6 Parts Tested (P&ID Reference)

Chamber closure integrity

9.7 Acceptance/rejection criteria

General

The test shall be repeated if the data acquisition looks doubtful or failed completely The test is considered successful when the conditions outlined below are met.

Acceptance Criteria

46

The diffusive CO_2 leakage rate from inside the chamber against ambient total pressure and partial pressures of CO_2 , calculated as the slope of a tangent to a 48 hour CO_2 concentration decay curve at the operational condition of 1000 ppm, expressed as % Leakage of CO_2 (relative to initial value) per day is less than 7% per day

Rejection Criteria

The diffusive CO_2 leakage rate from inside the chamber against ambient total pressure and partial pressures of CO_2 , calculated as the slope of a tangent to a 48 hour CO_2 concentration decay curve at the operational condition of 1000 ppm,, expressed as % Leakage of CO_2 (relative to initial value) per day is greater than 7% per day

9.8 Environmental requirements

Normal ambient conditions in temperature, pressure and gas composition are sufficient. The chamber exterior air lock doors shall remain closed during this test but the interior air lock doors shall remain open.

During the test the CO₂ concentration will be increased to 1500 ppm with the main centrifugal blower running.

9.9 Safety aspects

- 1. The operator must not enter the chamber during the test due to high CO₂ levels
- 2. The exterior doors and all interface ports must remain sealed

9.10 Test set-up

Ancillary Equipment Required for Test:

- 1. Pressure regulated and adjustable (0 120 kPa) 99.99% (or better) CO₂ gas source with to be connected to the CO₂ injection line inlet solenoid (SV_4113_01)
- Calibrated air source (certified with concentrations according to manufacturer's instructions) and regulator (0 120 kPa delivery) to be connected to the CO₂ analyzer when required for calibration
- 3. Calibrated air source of 99.99 or better purity Nitrogen with a regulated supply to be connected to the CO₂ analyzer when required for calibration

Verification prior to test performance: confirmation of settings in the Table 1.

Sub-system	Components concerned	Tag (P&ID)	Status at start	Remark/setpoint
Gas Analysis	IRGA	AT_4113_01	Connected to HPC1	Confirm air flow through
			through dedicated inlet	analyzer and operation of

			and outlet lines. Analyzer is turned on and operational	analyzer sampling pump. Analyzer sample return is back to the chamber growing volume to create a closed sampling system
Gas Analysis	Mass Flow Controller for CO ₂	FC_4113_01	Closed (0 L/min flow)	
Gas Analysis	CO ₂ injection line solenoid	SV_4113_01	Closed	
Gas Analysis	CO ₂ injection line manual over-Ride ball valves	HV_4113_01	Closed	No CO ₂ gas supplied to inlet solenoid at start of test
Air Lock	Exterior Air Lock Doors	N/A	Closed	
Air Lock	Interior Air Lock Doors	N/A	Open	
Air Lock	Purge Inlet and Vent Solenoid Valves	RV_4100_01, SV_4102_01, SV_4102_02, RV_4101_01, SV_4103_01, SV_4103_02	Closed	
Air Circulation	Main Blower and VFD	BLWR_4111_01, MVFD_4111_01	Running at normal operational speed for mixing (TBD)	
EC/pH	Pressure equilibration valves manually closed		Closed	
Irrigation	Irrigation Pump Inlet Manual Override	HV_4106_02	Closed	
Irrigation	Irrigation Drain Manual Override	HV_4106_03	Closed	
Interface	All interface ports sealed		Sealed	

9.11 Test As-Run Procedure

Date:	11/03/09		Test Engine	er/operator: M. Stasiak	
Time:	15:15		MPP Superv	vision: R. Moyano	
Seq.	Description	Required/Nom	Measured/	Remarks/Calculation (raw data are	Pass (P)
Nb.		inal	calculated	expected as well as their treatment)	Fail (F)
1	Activate main centrifugal blower VFD to operate at				Р
	the normal operating speed for mixing (TBD)				
2	Confirm fan operation through Argus control	Flow > 0	4.12 m/s		Р
	system and air velocity sensor (FT_4111_01)				
	output				
3	With the IRGA sampling (and stabilized) from the	AT_4113_01	> ambient	Test started after test 8 so CO ₂ level	Р
	interior growing volume, record the initial reading	reading		was already elevated and not	
		ambient CO ₂		permitted to return to ambient level	
		(350 – 400		to save time in the testing	
		ppm)		procedures	_
4	Set the Argus control system CO ₂ demand to 1500	SV_4113_01	Demand		Р
	ppm	is OPEN	set to		
			1500		_
5	Open the CO ₂ line delivery pressure to 110 kPa	CO ₂ tank	Pressure		Р
		regulator	at 1.9 bar		
		delivery at 110			
		kPa			
6	Open the CO_2 injection (SV_4113_01) override	SV_4113_01	Valve		Р
_			activated		6
	Allow the system to equilibrate at 1500 ppm for 2			The Argus control system will inject	Р
	nours to allow time for equilibration with the			CO ₂ until the setpoint is reached	
	passive air pressure compensation bags				6
8	In the Argus control system, set CO_2 control to			Manual valve was also closed	Р
	manual off so that no more CO_2 is added to the			(SV_4113-01)	
	system				
9	Allow data collection by the Argus control system				Р
	tor a minimum of 48 hours				

10	Calculate the leak rate given the concentration at the beginning of the test and after 24 hours	Initial: 1495 Final : 1484	Р
	([CO ₂] start – [CO ₂] final) / [CO ₂] start * 100% = % leakage per day	Leakage rate = 0.74%	

9.12 Conclusions

Leakage rate was less than the maximum allowable rate of 7 percent. Leakage and chamber integrity criteria are met.

9.13 Deviations

Seq	Description of the modification	Justification
Nb.		

10 EC System Functional Testing

10.1 Procedure ID: MPP-HPC1-EC – FT

10.2 Introduction

The aim of this test is to demonstrate and test the operation of the stock injection solenoids, the stock tank injection over-ride manual ball valves, the integrity of stock tanks, the EC sensor and the pressure equilibration manual ball valves.

10.3 Acronyms used in this test plan procedure

EC – Electrical Conductivity

10.4 Applicable documents

Technical Annex to SOW ref: TEC-MCT/2005/3466/In/CP TN 85.71 including P&ID

10.5 Data Log File Names:

MPP_HPC1_EC_FT.txt

10.6 Parts Tested (P&ID Reference):

- VSSL_4108_01, VSSL_4108_02 (Stock Tanks A and B)
- SV_4108_01, SV_4108_02 (Stock A and B injection valves)
- LSL_4108_01, LSL_4108_02 (Stock A and B tank low level switches)
- HV_4108_01, HV_4108_02 (Stock A and B Injection Manual Over-ride Valves
- AT_4108_01 (EC Sensor)

10.7 Acceptance/rejection criteria

General

The test shall be repeated if the data acquisition looks doubtful or failed completely The test is considered successful when the acceptance criteria that follow are met

Acceptance criteria

51

TECHNICAL NOTE 96.5

Proper functioning of the following parts is demonstrated, according to the conditions noted;

- 1. Stock Tanks A and B do not show evidence of leakage (VSSL_4108_01, VSSL_4108_02)
- 2. The functionality of the injection solenoid valves is demonstrated (SV_4108_01, SV_4108_02)
- 3. The low level switches for the stock tanks are demonstrated (LSL_4108_01, LSL_4108_02)
- 4. The manual stock injection override valves are demonstrated (HV_4108_01, HV_4108_02)
- 5. The EC sensor is demonstrated operational

Rejection criteria

The test shall be repeated if the data acquisition looks doubtful or failed completely or if any of the conditions outlined above are not met.

10.8 Environmental requirements

Normal ambient conditions in temperature, pressure and gas composition are sufficient. The chamber exterior and interior air lock doors shall be closed in this test (leakage test running concurrently) but no special environment control of the interior of the chamber is required.

10.9 Safety aspects

No special safety considerations have been identified for this test.

10.10 Test set-up

Ancillary Equipment Required for Test:

- 1. Prepared Stock A and B Solutions (see TN96.3 'Test protocols and procedures for lettuce cultivation')
- 2. Control system set to record signals from the EC sensor

Sub-system	Components concerned	Tag (P&ID)		Status at start	Remark/setpoint
Irrigation	Main Irrigation Pump	GP_4106_01		Off	
Irrigation	Manual shut-off valve to chamber	HV_4106_01		Closed	
Irrigation	Irrigation drain manual valve	HV_4106_03		Closed	
Irrigation	Irrigation by-pass isolation valves	HV_4106_04	and	Open	
		HV_4106_05			
Irrigation	Irrigation Pump Inlet Manual Over-	HV_4106_02		Open	

Verification prior to test performance: confirmation of settings in the Table 1.

52

Irrigation	Stock Tanks A and B	VSSL_4108_01, VSSL_4108_02	Filled to capacity with deionized water 24 hours prior to this functional test.
Irrigation	Hydroponics reservoir	VSSL_4106	Empty
EC	EC Sensor	AT_4108_01	Logging with Argus
EC	Stock Injection Solenoids	SV_4108_01, SV_4108_02	Closed
EC	Stock Injection Manual Over-Ride valves	HV_4108_01, HV_4108_02	Closed

10.11 Test As-Run Procedure

Date: 1 Time: 1	Date: 10/03/09 Time: 15:15			Test Engineer/operator: M. Stasiak MPP Supervision: R. Moyano		
Seq.	Description	Required/	Measured/	Remarks/Calculation	Pass (P)	
1	Calibrate EC sensor as per manufacturers requirements.	Norminal	Calculated		P	
2	Check Stock A and B tanks for leakage.			No leakage should be seen in acid/base tanks or allied plumbing lines. Tanks have been filled for 24 hours. Leaks will appear as drops or puddles in and around the tanks and/or feed lines	Р	
3	Open the Stock A manual injection valve (HV_4108_01)				Р	
4	Record the state of the Solution A float level sensor as shown in the Argus control system (LSL_4108_01)		100	The sensor should read 100%	P	
5	Using the Argus control system, set the Stock Solution A valve to 'manual on' (VSSL_4108_01)				Р	

6	Observe Stock Tank A for 5 minutes or until the tank is empty			If water has drained from the tank, the test is successful	Р
7	Record the state of the Solution A float level sensor as shown in the Argus control system (LSL_4108_01)		28	The sensor should read < 50%	Ρ
8	Close Stock A manual injection valve (HV_4108_01) and set the control to 'manual off' (VSSL_4108_01) with Argus				Ρ
9	Open the Stock B manual injection valve (HV_4108_02)				Р
10	Record the state of the Solution B float level sensor as shown in the Argus control system (LSL_4108_02)		100	The sensor should read 100%	Ρ
11	Using the Argus control system, set the Stock Solution B valve to manual on (VSSL_4108_02)				Ρ
12	Observe Stock Tank B for 5 minutes or until the tank is empty			If water has drained from the tank, the test is successful	Р
13	Record the state of the Solution B float level sensor as shown in the Argus control system (LSL_4108_02)		16	The sensor should read < 50%	Ρ
14	Close Stock B manual injection valve (HV_4108_02) and set the control to 'manual off' (VSSL_4108_02) with Argus				Ρ
EC S	ystem Test				
15	The hydroponics reservoir is filled, manually, with approximately 150 L of distilled water from facility source	VSSL_410 6 filled to 150 L with dH2O	Tank filled	May be done through open top of the reservoir	Ρ
16	Fill Stock Tanks with prepared Stock A and B Solutions.			see TN96.2 'Test protocols and procedures for lettuce cultivation'	Р

54

17	The main irrigation pump is started and set to provide a mixing flow	GP_4106_ 01 is ON	Pump on	As the main valve to the hydroponics trays is closed, only use as much power as needed to allow a moderate flow through the bypass line	P
18	Adjust valves HV_4106_04'a' and 'b' to provide adequate flow through the irrigation bypass pipe and past the EC sensor.	HV_4106_ 04 valves are opened	Valves opened	25% is typical	Р
19	Confirm that the EC sensor is reading less than 100 uS, although this depends on the water source available	AT_4108_ 01 reading less than 100 uS	0.06		Р
20	Open the manual Stock A Tank injection valve	HV_4108_ 01 OPEN	Valve open		Р
21	Activate the Stock A injection solenoid using the Argus control system for 20 seconds	SV_4108_ 01 is OPEN	Solenoid activated		Р
22	Confirm that the EC rises – wait until the reading is stable before continuing to the next step		0.11		Р
23	Open the manual Stock B Tank injection valve	HV_4108_ 02 OPEN	Valve opened		P
24	Activate the Stock B injection solenoid using the Argus control system for 20 seconds	SV_4108_ 02 is OPEN	Solenoid activated		P
25	Confirm that the EC rises		0.20		P

55

10.12 Conclusions

The EC control system functions as required.

10.13 Deviations

Seq.	Description of the modification	Justification
Nb.		

11 pH System Functional Testing

11.1 Procedure ID: MPP-HPC1-pH – FT

11.2 Introduction

The aim of this test is to demonstrate and test the operation of the acid and base injection solenoids, the acid/base tank injection over-ride manual ball valves, the integrity of acid/base tanks, and the pH sensor.

11.3 Acronyms used in this test plan procedure

None

11.4 Applicable documents

Technical Annex to SOW ref: TEC-MCT/2005/3466/In/CP TN 85.71 including P&ID

11.5 Data Log File Names:

MPP_HPC1_pH_FT.txt

11.6 Parts Tested (P&ID Reference):

- 1. VSSL_4107_01, VSSL_4107_02 (Acid and Base Tanks)
- 2. SV_4107_01, SV_4107_02 (Acid and Base injection valves)
- 3. LSL_4107_01, LSL_4107_02 (Acid and Base tank low level switches)
- 4. HV_4107_01, HV_4107_02 (Acid and Base Injection Manual Override Valves)
- 5. AT_4107_01 (pH Sensor)

11.7 Acceptance/rejection criteria

General

The test shall be repeated if the data acquisition looks doubtful or failed completely

The test is considered successful when the following conditions are met

Acceptance criteria

Proper functioning of the following parts is demonstrated, according to the conditions noted;

57

- 1. The acid and base tanks do not show evidence of leakage (VSSL_4107_01, VSSL_4107_02)
- 2. The functionality of the injection solenoid valves is demonstrated (SV_4107_01, SV_4107_02)
- 3. The low level switches for the stock tanks are demonstrated (LSL_4107_01, LSL_4107_02)
- 4. The manual stock injection override valves are demonstrated (HV_4107_01, HV_4107_01)
- 5. The pH sensor is demonstrated operational

Rejection criteria

The test shall be repeated if the data acquisition looks doubtful or failed completely or if any of the conditions outlined above are not met.

11.8 Environmental requirements

Normal ambient conditions in temperature, pressure and gas composition are sufficient. The chamber exterior and interior air lock doors shall be closed in this test (leakage test running concurrently) but no special environment control of the interior of the chamber is required.

11.9 Safety aspects

Concentrated acid and base solutions will be used in this test. Caution and adherence to laboratory safety protocol must enforced at all times.

11.10 Test set-up

Ancillary Equipment Required for Test:

- 1. Prepared Acid and Base Solutions as per TN96.3
- 2. Control system set to record signals from the pH sensor

Sub-system	Components concerned	Tag (P&ID)	Status at start	Remark/setpoint
Irrigation	Main Irrigation Pump	GP_4106_01	Off	
Irrigation	Manual shut-off valve to chamber	HV_4106_01	Closed	
Irrigation	Irrigation drain manual valve	HV_4106_03	Closed	
Irrigation	Irrigation by-pass isolation valves	HV_4106_04 and	Open	
		HV_4106_05		
Irrigation	Irrigation Pump Inlet Manual Over-	HV_4106_02	Open	

Verification prior to test performance: confirmation of settings in the Table 1.

58

	Ride Valve			
Irrigation	Hydroponics reservoir	VSSL_4106	Empty	
рН	Acid and Base Tanks	VSSL_4107_01,	Each filled to capacity with	No leakage should be
		VSSL_4107_02	deionized water 24 hours	seen in acid/base tanks
			prior to this test.	or allied plumbing lines
рН	pH Sensor	AT_4107_01	Logging	
pН	Acid and Base Injection Solenoids	SV_4107_01,	Closed	
		SV_4107_02		
pH	Acid and Base Manual Over-Ride	HV_4107_01,	Closed	
	valves	HV_4107_02		

11.11 Test As-Run Procedure

Date: 10 Time: 15	Date: 10/03/09 Time: 15:30		Test Engineer/operator: M. Stasiak MPP Supervision: R. Moyano		
Seq.	Description	Required/	Measured/	Remarks/Calculation	Pass (P)
IND.		Nominal	calculated		Fall (F)
1	Calibrate pH probe as per manufacturer requirements				Р
2	Check Acid and Base reservoirs for signs of leakage			No leakage should be seen in acid/base tanks or allied plumbing lines. Tanks have been filled for 24 hours. Leaks will appear as drops or puddles in and around the tanks and/or feed lines	Ρ
3	Open the Acid manual injection valve (HV_4107_01)				Р
4	Record the state of the Acid float level sensor as shown in the Argus control system (LSL_4107_01)		100	The sensor should read 100%	Р
5	Using the Argus control system, set the Acid valve to 'manual on'				Р

59

	(VSSL_4107_01)				
	Observe the said teals for 5 minutes or			If water has duringed from the table	
6	until the tank is empty			the test is successful	Р
7	Record the state of the Acid tank float level sensor as shown in the Argus control system (LSL_4107_01)		0	The sensor should read < 50%	£
8	Close acid manual injection valve (HV_4107_01) and set the control to 'manual off' (VSSL_4107_01) with Argus				£
9	Open the Base manual injection valve (HV_4107_02)				Р
10	Record the state of the Base tank float level sensor as shown in the Argus control system (LSL_4107_02)		100	The sensor should read 100%	Р
11	Using the Argus control system, set the Base valve to 'manual on' (VSSL_4107_02)				Ρ
12	Observe the Base tank for 5 minutes or until the tank is empty			If water has drained from the tank, the test is successful	Р
13	Record the state of the Base tank float level sensor as shown in the Argus control system (LSL_4107_02)		0	The sensor should read < 50%	Ρ
14	Close Stock B manual injection valve (HV_4107_02) and set the control to 'manual off' (VSSL_4107_02) with Argus				Р
pH Sy	vstem Test				
15	Fill the hydroponic reservoir with approximately 150 L of distilled water from facility source	VSSL_4106 filled to 150 L with dH2O	Tank filled	May be done through open top of the reservoir	Р
16	Fill Acid and Base Tanks with prepared Solutions.			see appendix MPP-HPC1- Solution-App1	Р

60

17	The main irrigation pump is started and set to provide a mixing flow	GP_4106_01 is ON	Pump on	As the main valve to the hydroponics trays is closed, only use as much power as needed to allow a moderate flow through the bypass line.	Ρ
18	Adjust valves HV_4106_04'a' and 'b' to provide adequate flow through the irrigation bypass pipe and past the pH sensor.	HV_4106_04 valves are opened	Valves adjusted	25% is typical	Ρ
19	Confirm that the pH sensor positioned on the by-pass line is logging	AT_4107_01	Sensor functional	Baseline pH level is dependent upon the water source	Р
20	Open the manual Acid Tank injection valve	HV_4107_01 OPEN	Valve opened		Р
21	Using the Argus control system, activate the Acid injection solenoid for 10 seconds	SV_4107_01 is OPEN	Solenoid activated		Ρ
22	Confirm that the pH sensor readings decrease after injection	AT_4107_01 reading decreasing	pH decreasing		Ρ
23	Close the manual Acid Tank injection valve	HV_4107_01 Closed	Valve closed		Р
24	Allow pH to stabilize before proceeding to the next step				Р
25	Open the manual Base Tank injection valve	AT_4107_02	Valve opened		Р
26	Using the Argus control system, activate the Base injection solenoid for approximately 10 seconds	HV_4107_02 OPEN	Solenoid activated		Ρ
27	Confirm that the pH sensor readings increase after injection	SV_4107_02 is OPEN	pH increased		Р
28		AT_4107_01 reading			Р

		increasing		
29	Close the manual Base injection valve	HV_4107_02	Valve	Р
		Closed	closed	

11.12 Conclusions

The pH control system functions as required.

11.13 Deviations

Seq.	Description of the modification	Justification
IND.		

12 Irrigation Sub-System Functional Testing

12.1 Procedure ID: MPP-HPC1-IRRIGATION-FT

12.2 Introduction

The purpose of this test is to demonstrate the integrity of the nutrient reservoir and plumbing, to confirm flow among water cascade spigots, and to ensure operation of the main irrigation pump and outlet flow sensor.

12.3 Acronyms used in this test plan procedure

None

12.4 Applicable documents

Technical Annex to SOW ref: TEC-MCT/2005/3466/In/CP TN 85.71 including P&ID

12.5 Data Log File Name:

MPP_HPC1_IRRIGATION_FT.txt

12.6 Parts Tested (P&ID Reference):

- 1. GP_4106_01 (Main Irrigation Pump)
- 2. FT_4106_01 (Irrigation Flow Sensor)
- 3. HV_4106_01 (Manual shutoff to chamber)
- 4. Irrigation manifold in chamber
- 5. HV_4106_02 (Irrigation Pump Inlet Manual Override)
- 6. HV_4106_03 (Irrigation Drain Manual Override)
- 7. HV_4106_04 and HV_4106_05 (Irrigation By-pass Isolation Valves)
- 8. HV_4106_05, HV_4106_06, HV_4106_7, HV_4106_8 (Manifold Balancing Ball Valves)
- 9. VSSL_4106 (Nutrient Reservoir)

12.7 Acceptance/rejection criteria

63

TECHNICAL NOTE 96.5

General

The test is considered successful when the following conditions are met

Acceptance criteria

1. There are no fluid leaks along the irrigation lines of in the reservoir

2. The total flow rate delivered to the trays is 3 L/min or greater as shown by the flow sensor

Rejection criteria

The test fails if any of the conditions for test success noted above are not met.

12.8 Environmental requirements

Normal ambient conditions in temperature, pressure and gas composition are sufficient.

12.9 Safety aspects

No specific safety aspects are noted

12.10 Test set-up

Ancillary Equipment Required for Test: None

Verification prior to test performance: confirmation of settings in the Table 1.

Sub-system	Components concerned	Tag (P&ID)	Status at start	Remark/setpoint
Irrigation	Nutrient reservoir	VSSL_4106_01	Filled with 160L of	
			deionized water	
Irrigation	All manual valves	All HV_ series valves in	All valves open	
		4106 are open	-	
Irrigation	Flow Sensor	FT_4106_01	Factory calibrated	

12.11 Test As-Run Procedure

Date:	05/02/09		Test Engine	er/operator: M. Stasiak	
Time: 1	14:30		MPP Super	vision: R. Moyano	
Seq.	Description	Required/	Measured/	Remarks/Calculation	Pass (P)
Nb.		Nominal	calculated		Fail (F)
1	Install growing trays in chamber.				Р
	Activate irrigation pump	GP_4106_01	Pump on		Р

This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization Memorandum of Understanding 19071/05/NL/CP

64

1		is ON			
2	Set irrigation pump speed controller stepwise until a minimum of 3 L/min of flow is observed in the Argus control system overview screen			Speed can be adjusted to provide a visually adequate flow	Р
4	Adjust balancing valves to provide a reasonably balanced flow across the four irrigation spout manifolds				Р
5	Confirm reading of irrigation flow sensor	FT_4106_01 reading	5.18 L/min 4.63 L/min	5.19 L/min with sensor bypass closed 4.63 L/min with sensor bypass open	Р
6	Confirm that flow is at or above 3 L/min and that there is water coming out of each of the spouts along the irrigation manifolds				Р
	Deactivate irrigation pump	GP_4106_01 is OFF	0.26 L/min	Due to factory calibration requirements of the sensor, zero flow shows 0.265 L/min. Can be corrected with software modification.	Р

12.12 Conclusions

Nutrient system functions as required. No leaks were present. System was demonstrated on 02/06/2009 to UAB staff.

12.13 Deviations

Seq	Description of the modification	Justification
Nb.		

13 Thermal Control Sub-System Functional Testing

13.1 Procedure ID: MPP-HPC1-TEMPERATURE/HUMIDITY-FT

13.2 Introduction

The purpose of this test is to confirm operation of the growing volume temperature and humidity sensors, the fluid integrity of both the hot and chilled water coils and service lines, confirmation of operation of the 3 way proportional valves and the functionality of temperature sensors positioned on the coils and water service inlet and exit lines.

13.3 Acronyms used in this test plan procedure None

13.4 Applicable documents

Technical Annex to SOW ref: TEC-MCT/2005/3466/In/CP TN 85.71 including P&ID

13.5 Data Log File Name:

MPP_HPC1_TEMPERATURE_HUMIDITY_FT.txt

13.6 Parts Tested (P&ID Reference):

- 1. TT 4112_04 _012 (Growing volume temperature sensors)
- 2. AT 4112_01 _03 and TT 4112_01 _03 (growing volume humidity and temperature sensors)
- 3. S3CV_4112_01 and S3CV_4112_02 (water service line control valves)
- 4. TT_4112_13 _18 (water service line entry and exit temperature sensors, coil surface temperature sensors)

13.7 Acceptance/rejection criteria

General

The test shall be repeated if the data acquisition looks doubtful or failed completely

The test is considered successful when the following conditions are met:

Acceptance criteria

66

TECHNICAL NOTE 96.5

The functional test is deemed successful if:

- all temperature sensors (TT_4112_Series) are shown to be functional
- all humidity sensors are shown to be functional
- The proportional valves may be opened with induction from external signal

Rejection criteria

The test has failed if any of the conditions above are not met

13.8 Environmental requirements

Normal ambient conditions in temperature, pressure and gas composition are sufficient.

13.9 Safety aspects

No special safety issues have been identified for this test.

13.10 Test set-up

Ancillary Equipment Required for Test: None

Verification prior to test performance: confirmation of settings in the Table 1.

Sub-system	Components concerned	Tag (P&ID)	Status at start	Remark/setpoint
Air-Flow	Blower/VFD	BLWR_4111_01 MVFD_4111_01	ON	Operation under normal chamber conditions and Argus system control
Air handling	Chilled recirculated water must be available and below 6C +/- 0.5 Hot recirculated water must be available and set to 45C +/- 0.5			Chilled water source temperature was above 6C and varied by greater than +/- 0.5C Hot water source temperature was above 45C

13.11 Test As-Run Procedure

Date: 27/03/09	Test Engineer/operator: M. Stasiak
Time: 16:50	MPP Supervision: R. Moyano

Seq. Nb.	Description	Required/ Nominal	Measured/ calculated	Remarks/Calculation	Pass (P) Fail (F)
1	Record sensor readings from the Argus 'HPC System Overview' screen.			Sensors that are not functional will show a reading of 'Failed' instead of the actual sensor value. Sensor function passes if 'Failed' is not present.	Ρ
2	Module A		T 27.67 RH 31.8		Ρ
3	Module B		T 21.57 RH 43.5		Ρ
4	Module C		T 25.83 RH 30.7		Ρ
5	Heat exchanger		T _{src_} 46.71_ T _{loop_} 30.97_ -		P

		T _{exit} <u>33.25</u>		
6	Condensing coil	T _{src} 9.44		Р
		T _{loop} _9.44		
		T _{exit} 19.45		
7	Cold rad	T <u>19.79</u>		Ρ
8	Hot rad	T <u>20.86</u>		Ρ
9	Hydroponic Solution Temperature	T_ <u>23.41</u> _		Ρ
10	Cold valve (S3CV_4112_01) function. In the Argus control system, set the cold valve to manual 100% open	T _{loop} _9.51 T _{exit} _9.50	Temperatures in these sensors should decrease over time	Ρ
		T _{cold} rad		
11	Set cold valve (S3CV_4112_01) to manual 0% open			Р
12	Hot valve (S3CV_4112_02) function. In the Argus control system, set the hot valve to manual 100% open	T _{loop} <u>44.09</u> T _{exit} 36.82	Temperatures in these sensors should increase over time Test was interrupted by UAB shutdown of hot water supply – completed March	Ρ

		T _{hot rad} <u>31.36</u>	30, 2009 @ 19:27	
13	Set hot valve (S3CV_4112_02) to manual 0% open			Ρ

13.12 Conclusions

Sensors and valves operate as required.

13.13 Deviations

Seq. Nb.	Description of the modification	Justification

14 Crop Testing

14.1 Introduction

The purpose of this test is to characterize system functioning with a growing crop. The primary criteria to be tested are temperature, humidity control and CO_2 control. Depending on crop development, pH and EC control may be utilized as well.

14.2 Consumables required for Operational Testing with Crops

Consumables:

- 1. Rockwool small cubes Grodan AO 36/40 6/15W (2940 in carton)
- 2. Rockwool large cubes Grodan Delta 4G 42/40(383 in carton)
- 3. Seed germination trays and covers
- 4. Lettuce seeds cv. Grand Rapids

Equipment:

- 1. Balance for micro-nutrient and salt measurement (500 g \pm 0.01g)
- 2. Solution stock storage tanks (2 x 20 L tanks with spigot, PP)
- 3. Seedling nutrient storage tank (1 x 10 L with spigot, PP)
- 4. Solution transfer tank (1 x 200 L tank, PP)
- 5. Submersible pump (5 L min⁻¹ or greater) and connection tubing
- 6. Growth cabinet for seedling establishment (300 μmol s⁻¹ m⁻² PAR minimum). HPC can be substituted, if available, with all lamps on and appropriate temperature/RH setpoints
- 7. Higher plant chamber (1 or more)
- 8. Magnetic stirring plate, stirring bars
- 9. Tweezers

14.3 Solution Preparation

The chamber design allows for the use of a common nutrient solution (single reservoir) feeding all age classes of the crop in staged culture and all trays in batch culture. Studies using the nutrient solution formulation tabled below have been successfully used in staged and batch

71

culture of beet and lettuce with periodic solution dumping. For the crop test, solution dumping will not be performed. For more detailed instruction on solution preparation, please refer to TN96.3.

Component	Mol. Wt. (g)	Feed Strength (mM)
	Stock A	
Ca(NO ₃) ₂ ·4H ₂ O	236.16	3.62
FeCl ₃ •6H ₂ O	270.30	0.08
Na- EDTA	372.24	0.10
	Stock B	
MgSO ₄ ·7H ₂ O	246.48	1.00
KNO ₃	101.10	5.00
NH ₄ H ₂ PO ₄	115.08	1.50
(NH ₄) ₂ SO ₄	132.00	1.00
	Micronutrients	
H_3BO_3	61.83	0.02
MnSO ₄ •H ₂ O	169.01	0.0050
ZnSO ₄ •7H ₂ O	287.54	0.0035
CuSO ₄ •5H ₂ O	249.68	0.0008
H ₂ MoO ₄ (85% MoO ₃)	161.97	0.0005

Table 1. Typical hydroponics nutrient solution used in HPC studies

The nutrient solution is made using concentrated stocks solutions. Once made, the nutrient solution is pumped into the main NDS tank and the irrigation system is started once the seedlings have been added to the growing trays.

14.4 Germination, Emergence, Thinning, Planting

Plant individual seeds in Rockwool cubes (approximately 200 seeds for 2 flats of Rockwool cubes) rinsed with deionized water and place under a clear cover beneath a suitable lighting source. The seeds are watered regularly (daily) with a diluted feed stock solution. After emergence the clear cover is removed. Rockwool and trays for germination may be readily obtained from local greenhouse suppliers. Fourteen days after planting, the seedlings can be transferred to larger Rockwool blocks to be placed in the HPC1 growing trays and moved into the chamber.

As this is a batch culture test, all troughs will be loaded into the chamber at one time. Once in position, the irrigation system is activated. For more detailed instruction on plants cultivation, please refer to TN96.3. Samples of hydroponic solution should be tested for EC and pH daily to verify HPC1 sensors.

14.5 Crop growth

Once the chamber is loaded, the controller is programmed to provide the following environment conditions for the entire period of crop growout (7 days).

 CO_2 Demand – 1000 ppm Temperature – 26/20 ° C (day/night) VPD – 9.0 day, 6.0 night EC – 2 mS/cm pH - 5.8 O_2 – not controlled Light Intensity – All lights operational

14.6 Analysis of Net Carbon Exchange Rate and Assessment of Model Performance

The computer controller maintains CO_2 concentrations at demand levels during day-light hours through the automated injection of pure CO_2 through a mass flow controller. The amount of time the mass flow controller is on, recorded by the Schneider control system as seconds of injection time, is used to estimate net carbon gain of the developing crop stand. If a suitable amount of time for crop growth permits, NCER can be calculated.

14.7 Harvest

As this is a shortened and basic functional test of the HPC with plants, harvest parameters are not required. Should time and equipment allow, the following can be performed for the purpose of training and practice:

TECHNICAL NOTE 96.5

- 1. At the end of the growing period (variable depending on time requirements for other HPC activities), each individual plant is harvested and separated into edible and inedible fractions. Fresh weight and leaf area for leaf material is recorded. Since it is not possible to separate completely roots from Rockwool cubes, only approximate estimation of roots weight can be done.
- 2. Leaf material and roots, removed from Rockwool cubes, are placed in paper bags in a drying oven for 3-7 days at 70° C, depending on the drying oven and plant material.
- 3. Dry weights of all plant parts is recorded.
- 4. Tissue samples are to be collected for % C, H, O, N, S, P determination.
- 5. A carbon balance is determined from the NCER estimates obtained above, the dried biomass and measured carbon content.

For more detailed instruction on plants sampling and analysis, please refer to TN 96.4.

14.8 Data log file names

HPC_CROPTEST_24h_1min.txt

HPC_CROPTEST_April23-May4_5min.txt

TECHNICAL NOTE 96.5

15 Crop test results and conclusions

The following outlines the short-term operational test results in HPC1 with a batch culture of lettuce (*Lactuca sativa* L . cv. Grand Rapids) performed at the UAB MELiSSA pilot plant in Barcelona, Spain. Lettuce seeds were planted in rockwool on April 8, 2009. One hundred seedlings were transplanted into larger rockwool cubes and placed in the HPC on April 23, 2009. The closed chamber test was performed over an eleven day period between April 23, 2009 and May 4, 2009. The chronology of the events for seedling establishment and initial development can be found in Appendix 1.

15.1 HPC operation

During eleven days of closure the HPC1 performed well with only a single external event which caused a loss of data and temperature control. On April 25, 2009 at approximately 06:10 there was a loss of power in the UAB MELiSSA facility. Although the HPC and its control systems regained power, the air circulation fan and Argus data computer remained without power. Power to the Argus computer was restored at approximately 07:50 on April 27, 2009, two days after the initial power loss. As the lettuce crop was visually unaffected, the test was allowed to continue until its scheduled partial harvest date of April 30, 2009 (Figure 1).

Figure 1. Lettuce crop resulting from 7 days of growth in HPC1 at UAB

On April 30, 2009, 20 lettuce plants were harvested (for detailed information on plants harvesting please refer to TN 96.4) and the crop test was continued past the scheduled final harvest date with the remaining 80 plants as requested by ESA. It was decided to have 2 dates of plant harvesting in order to obtain more data on chamber characteristics and plant production. The crop test was then subsequently completed on May 4, 2009, and resulted in an excellent crop of lettuce.

15.2 Environment Control

Time constraints prevented final tuning of the Argus Control System to UAB hot and chilled source temperatures and flow rates, however system performance was acceptable (Table 2). Day and night temperatures were 26.1C +/- 0.13 and 20.1 C +/- 0.16 respectively, averaging only 0.1 C above the desired setpoints when averaged over the 11 day growing period (Figure 2).

Relative humidity control did not perform as well as desired, with day and night values of 60.3 and 74.5 percent. The lack of control during the lighted period can be attributed to a combination of inadequate tuning and a fluctuating chilled water supply temperature. The fluctuations in RH closely matched the oscillations in the chilled water supply temperature (Figure 3,4,5). Improved control algorithms and improved control of the chilled water supply will greatly improve the control of relative humidity.

TECHNICAL NOTE 96.5

Parameter	Setpoint	Actual	Standard deviation				
Temperature							
Day	26 C	26.1 C	0.13				
Night	20 C	20.1 C	0.16				
VPD							
Day	8.5	13.4	2.68				
Night	6.0	6.0	0.28				
Humidity							
Day	75 %	60.3 %	7.94				
Night	75 %	74.5 %	1.14				
Carbon Dioxide	1000 µmol mol-1	1002 µmol mol-1	1.35				
pН	5.8	5.8	0.26				
EC	1.97 mS cm ⁻¹	2.0 mS cm ⁻¹	0.07				
MELiSSA Facility En	MELiSSA Facility Environment Control						
Temperature							
Day	N/A	25.1	1.40				
Night	N/A	20.6	0.78				
Chilled water source	6 C	9.3	0.52				
Hot water source	45 C	47.3	0.90				

Table 2: Environmental control setpoints and parameter readings averaged over an 11 day period of closure of HPC1 growing 100 lettuce plants (for location of the sensors, refer to the PID of the HPC, MPP-PID-10-4101)

Figure 2. Temperature control in the HPC and UAB MELiSSA pilot plant over the 11 day period of closure

Figure 3. Relative humidity control in HPC1 and temperature control of UAB chilled water

Figure 4. Control of temperature and humidity over a 24 hour period

Figure 5. Control of temperature and humidity during the transition from day to night

Control of carbon dioxide was excellent with daytime control of 1000 ppm +/- 1.35 (Table 2, Figure 6,7). Night time respiration was not controlled so CO_2 levels increased during the dark phase. Over the 11 day test period, night time CO_2 increases showed a steady increase from night to night (Figure 7).

The gap in data observed in figure 7 was due to data loss during a general UAB power failure at the start of the testing period. The drop in CO_2 between day 7 and 8 was from stopping CO_2

Figure 6. Carbon dioxide control over a 24 hour period on day 10 of the short term crop test. Light levels (PAR) are also indicated

control and opening the chamber doors to allow for the first harvest of 20 plants. In this case, the CO_2 dropped to ambient concentrations for a short period, and control was resumed when the doors were closed again. Over the period of closure, over 125 grams of carbon were accumulated, as calculated from injection from the UAB carbon dioxide gas source (Figure 7).

Carbon Dioxide (umol/mol) Carbon (grams) Carbon accumulated CO2 CO2 SETPOINT Ż Ó Days after closure

Figure 7. Carbon dioxide control over the full 11 day closed crop growth test in HPC1

TECHNICAL NOTE 96.5

Control of EC and pH was also within operational specifications. EC was maintained at or above the setpoint of 1.97 mS cm⁻¹ by system injection of concentrated nutrient stock solutions (Figure 8) and averaged 2.04 mS cm⁻¹ +/- 0.07 (Table 2). Similarly, pH was maintained between 5.6 and 6.0 by controlled injections of either acid or base, with an average pH of 5.8 +/- 0.26 (Figure 8. Table 2). Increase of pH value on the 6th day of closure was connected with the lack of HNO₃ in the acid tank. When the problem was detected, the acid tank was refilled and pH decreased Collection of water from evapotranspiration was also recorded by the Argus system (Figure 9). Condensate collected as a result of HPC1 humidity control resulted in a net production of approximately 90 litres of water. The measurement of the volume of condensed water is made by a counter summing up the number of times the high level switch of the condensate tanks is reached, before the content of condensates tank is reinjected into the

Figure 8. EC and pH control over an 11 day period in HPC1

nutrients tank by the pump CP 4110 01. The volume between the high level and low level switches in the condensate tank corresponding to one cycle of filling/emptying was measured to be 1L.

There was no way to separate evaporation from plants transpiration in this experiment, however future experiments could characterize evaporation from a fully operating system without plants.

Figure 9. Condensate collection over a period of 11 days in the UAB HPC1

Even if the temperature management performed well within the specified limits during the present test, the control of MELiSSA pilot plant chilled and hot water did not meet operational requirements for the HPC (Table 2, Figure 2). Also on several occasions the measured ambient temperature in the plant exceeded the control temperature within the chamber. As heat removal is critical to internal environment control, an external heat load would make operation increasingly difficult. Therefore, the measurement of plant operating temperature should be improved during future plant growth experiments with the HPC (indeed the thermal sensor was placed in a zone where the lights loft air was exhausted).

15.3 Growth results (7 days)

After 7 days of closure, lettuce growth was visually excellent (Figure 10). Growth beyond the planned 7 day test procedure was requested by ESA (Christel Paille, email communication, April 27, 2009) so at this stage only plants from position 3 were harvested in all 20 trays. The extension was required due to extended power losses at the MELiSSA pilot plant facility during the initial phases of plant growth. Plant numbering for harvest is shown in figures 10 and 11.

TECHNICAL NOTE 96.5

Detailed information on plant harvest methodology is found in TN 96.4. Shoot fresh biomass distribution along the chamber length is shown in Figure 12. Average shoot fresh and dry biomass per each module was also estimated in order to compare lettuce production between modules A, B and C (Figure 13).

Figure 10 Lettuce crop resulting from 7 days of growth in HPC1 at MPP viewed from module C to module A

Figure 12. Lettuce shoot fresh biomass (g) of plant # 3 along the chamber after 7 days of closure

а 14 12 10 shoot fresh biomass, g 8 6 4 2 0 module a module b module c b 1.2 1 shoot dry biomass, g 0.8 0.6 0.4 0.2 0 module a module b module c

Figure 13. Lettuce shoot biomass (g) of plant # 3, average per module after 7 days of closure: a - fresh biomass, b - dry biomass

After 7 days of lettuce cultivation in HPC1, differences in plant mass were observed along the chamber from module A to module C (Figure12). The lowest values were seen with individual plants in trays 12 and 13. These results could be connected with inequality of environmental conditions; however additional study replication is required to differentiate between environmental effects and naturally occurring genetic variability. No statistically significant difference could be seen in average lettuce shoot dry biomass per module (Fig.13, b). Lower average shoot fresh biomass of plants grown in Module B in comparison with the ones grown in module A and C (Fig.13, a) was correlated with lower water content in the shoots of plants from module B. In order to make valid conclusions,

it is necessary to perform experiments with a longer test duration under the same environmental conditions with a minimum of 3 replications.

15.4 Growth results (11 days)

Figure 14. Lettuce crop resulting from 11 days of growth in HPC1 at UAB, from module A to module C

After 11 days of closure the plants were harvested in the same order as after 7 days of closure, from module A to module C (Figure 11). Since plant 3 was harvested previously, only 4 plants per tray were weighed: plants 1,2,4 and 5 (figure 14).

On order to analyze plant mass distribution along the chamber, it was decided to present data of lettuce shoot dry and fresh biomass for each plant number (plant 1, 2, 4 and 5, see Figure 14) separately. Distribution of plant 1 shoot dry and fresh biomass is given in Figure 15. As it can be noted in Figure 16, shoot dry biomass of plant 2 is shown only for certain trays, as random plants from other travs were mixed with plant 4, and 7 samples were prepared for further analysis (TN 96.4). Absence of shoot dry biomass data of plant 4 for some trays (Figure 17) was also connected with samples preparation for the same analysis. Distribution of plant 5 along the chamber is shown in Figure 18.

Figure 15. Lettuce shoot biomass (g) of plant 1 along the chamber after 11 days of closure: a - dry biomass; b - fresh biomass

а 4 3,5 3 shoot dry biomass, g 2,5 2 1,5 module C 1 module A module B 0,5 0 0 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 4 # of trays

Figure 16. Lettuce shoot biomass (g) of plant 2 along the chamber after 11 days of closure: a - dry biomass (data available for trays 1, 3, 5, 7, 9,11,13,15,17,19); b - fresh biomass

TECHNICAL NOTE 96.5

Figure 17. Lettuce shoot biomass (g) of plant 4 along the chamber after 11 days of closure: a - dry biomass (data available for trays 2, 4, 6, 8,10,12,14,16,18, 20); b - fresh biomass

а 4 3,5 3 σ shoot dry biomass, 2,5 2 1,5 module B module C module A 1 0,5 0 0 2 3 10 11 12 13 14 15 16 17 18 19 20 21 1 4 5 6 7 8 9 # of trays

Figure 18. Lettuce shoot biomass (g) of plant 5 along the chamber after 11 days of closure: a - dry biomass; b - fresh biomass

As it can be seen from figures 15-18, after 3 additional days of plant cultivation in HPC1 variation in plant biomass along the chamber could be also observed. The same tendency for all plants

This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization Memorandum of Understanding 19071/05/NL/CP

91

TECHNICAL NOTE 96.5

took place: decrease of shoots biomass in module B, namely trays 12-14 depending on plant position in tray. For plants 1 and 2, biomass decrease was in tray 13 (Figure 15, 16), for plant 4 – in tray 14 (Figure 17) and for plant 5 - in tray 12 (Figure 18). This biomass decrease may be correlated with differences in environmental conditions in this particular area in comparison with the rest of the areas of the chamber. Also decrease in plants 1, 2 and 5 biomasses was observed in tray 1. But since it was not the case for all plants of tray 1, more replications should be carried out for assertion that there is a problem in this area. As this is a single experiment, specific cause/effect relationships cannot be easily ascertained without detailed replication of data. More work is required to determine plant/chamber interactions and to determine natural genetic variability within this cultivar when grown under controlled conditions.

In order to analyze distribution of plants that were grown along the walls of HPC1 (plants 1 and 5), where environmental conditions usually are not optimal, and in the central part of HPC1 (plants 2 and 4), average shoot dry and fresh biomass of central and extreme plants per tray was calculated and data is shown in figures 19 and 20. The average shoot biomass of plants 1 and 5 is shown in Figure 19. For plants 2 and 4 only shoot fresh biomass values were used as dry mass values were unavailable due to extended analytical procedures., thus data shown in Figure 20a is data taken from Figure 16a and 17a.

Averaging of lettuce biomass for the plants located next to the walls of the chamber (plant 1 and 5) showed high variability (more than 11%) in eight of a twenty trays (Figure19b). This observation is typical for the plants that grow along the edges of a plant growth chamber.

For the plants 2 and 4, differences in biomass could be observed only in 2 cases: for the plants grown in tray 1 and tray 4, in general, difference between plants was not high (1 - 8%) (Figure 20b). These results may indicate more equalized environmental conditions in the central (along the length) part of the HPC1, however without replication this is difficult to ascertain definitively.

Average plant biomass per tray is shown in Figure 21. Lower average shoot dry biomass could be observed in trays 1 and 13 (Figure 21a). For better visualization of plant distribution in HPC1, the data is shown in 3D format (Fig. 22). Data spread can be also seen in Figure 22, however shoot fresh biomass of majority of the plants was in range of 40-50 g per plant.

Average lettuce shoot dry and fresh biomass per each module of HPC1 is given in Figure 23, and no significant difference in lettuce average biomass per module could be observed. This indicates that although some variability in environmental conditions may be present in different areas of HPC1, it is not enough to cause significant differences in overall plants growth and development. Further replication of these results is required to further evaluate chamber variability and plant growth capabilities.

Figure 19. Lettuce shoot average biomass (g) of plant # 1 and #5 along the chamber after 11 days of closure: a - dry biomass; b - fresh biomass

TECHNICAL NOTE 96.5

Figure 20. Lettuce shoot biomass (g) of plant # 2 and #4 along the chamber after 11 days of closure: a - dry biomass of each plant along the chamber; b - average fresh biomass

а 4 3,5 ł shoot dry biomass, g Ŧ 3 2,5 2 1,5 module A module B module C 1 0,5 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 # of trays b

Figure 21. Lettuce shoot biomass (g) of plants 1, 2, 4, 5, averaged per tray after 11 days of closure: a - dry biomass; b - fresh biomass

Fig.22. Lettuce shoot fresh biomass (g) of plants #1,2,4,5, after 11 days of closure

Figure 23. Lettuce shoot biomass (g) of plants #1,2,4,5, average per module after 11 days of closure: a - dry biomass; b - fresh biomass

15.5 Analytical results

During seedling development, 9.4 L of seedling solution was used for irrigation. During the crop test, 8.06 L of stock solution (together stock A and stock B) was injected into the main nutrient tank, as well as 1.6 L of 0.5 M HNO₃ and 2.1 L of 0.5 M KOH. It should be noted that chemical analysis of nutrient solution and plant material was not required in the test protocol, but was a special request by ESA (Brigitte Lamaze-Lefebvre, email communication, April 24, 2009).

Analysis of nutrient solution mineral composition at the end of the 11 day test (table 3) showed accumulation of almost all macro- and micronutrients in comparison with the calculated initial solution composition. Depending on the element, final concentration of macro- and micronutrients was 2-3 times higher than initial one, but for Zn that value reached 4 times, and for Na and Cl – 5 times. It should be taken into consideration that mineral composition was not analyzed but only estimated according to solution recipe, and without analyzed starting solution values, comparisons between the starting and ending solutions cannot be reliably made. Future experiments will require analysis of the starting solution to improve confidence in data analysis and interpretation. In general, accumulation will occur as the total complex of nutrient components are added into the nutrient solution even though not all nutrients are required by the plants. As crops are grown and tested, modifications to the stock solution recipe for replenishment can be made according to plant developmental requirements.

In order to know the mineral and elemental composition of the seedlings before starting the crop test (t_0), the seedlings that were not planted in the chamber were collected 15 days after sowing. (the day following the start of the crop test), weighed, lyophilized and analyzed. Sixty-nine seedlings were collected and had a fresh weight 60.38 g and dry weight of 2.48 g. This crop phase is called as **Treatment 1** (table 4 and following).

Treatment 2 is the lettuce shoots, located in the central raw along HPC1 (plant 3, Figure 10), harvested after 7 days. **Treatment 3** is the lettuce shoots of plant 2 (Figure 13, samples were taken from trays 2, 4, 6, 8, 10, 12, 14, 16, 18, 20) and plant 4 (Figure 13, samples were taken from trays 1, 3, 5, 7, 9, 11, 13, 15, 17, 19), harvested after 11 days of crop test.

Analysis of lettuce shoot mineral composition at different phases of vegetative growth (Table 4) showed that the concentration of Ca, K, N, Fe and Mn in lettuce seedlings was higher than in lettuce shoots after 7 and 11 days of growth. Also content of P in seedlings was higher than in lettuce leaves after 7 days of crop test. One of possible reasons of the results obtained could be availability of more representative sample of seedlings for mineral analyses in comparison with samples of older plants (sample of seedlings was taken from 69 plants and samples of treatment 2 and 3 – from 20 plants each, see description of treatments for Table 4). It was noticed that the concentration of minerals in lettuce shoots of treatment 3 was equal or higher (for most of the minerals) than in the shoots of treatment 2. However it should be taken into consideration that even though error of measurements given by laboratory that analyzed samples (University of Barcelona) is 1%, when the concentration is near the quantification limit the error can increase up to a maximum of 15%. In Table 4 error is calculated according to data repeatability, but if error will be increased, no significant difference will be observed for most of nutrients between treatment 2 and treatment 3 and for some nutrients of treatment 1 in comparison with treatments 2 and 3. As this is a single test without replication, data interpretation is difficult. For better statistical reliability, further testing and replication should be performed.

Content of carbon and hydrogen in lettuce leaves (Table 5) was in the frames of average content of these elements in plants. However in lettuce shoots of treatment 2 contained higher quantities of these elements in comparison with treatment 1 and treatment 3. This difference between treatment 2 and treatment 3 could be connected with better environmental conditions, in

particular light intensity, for CO_2 fixation for the plants in the central row (plant 3, treatment 2) in comparison with plants situated in more extreme rows (plants 2 and 4, treatment 3). However this assumption is to be proved in the future experiments.

Estimation of total minerals introduction into the nutrient solution and nutrients accumulation in the plants (table 6 and table 7) showed, that plants contained very few quantity of nutrients relative to total injection, maximum 6% of total quantity of each element introduced during the test. Approximately 30-50% of elements are left in the nutrient solution by the end of the test and the rest are accumulated in lettuce roots, rockwool cubes and different parts of liquid loop including trays and pipes. If to take into account that roots dry weight compounds about 20-30 % of lettuce shoot dry weight and content of minerals in the roots is less or approximately equal to the one in the shoots, then most of the salts are probably accumulating in the rockwool cubes and trays.

Table 3. Mineral composition of nutrient solution in the beginning (estimated) and the end of the crop test (average of 3 samples) (mg/L)

Nutrients (mg/L)		Initial composition	After 11-days crop test		
		(estimated. TN 96.3)	Average sample	Standard* error	
	Са	140	325	65	
	Mg	20	57	5	
	К	200	538	38	
Macronutrionte	Р	50	54	14	
Macionulinentis	S	60	138	14	
	N- NO₃	170	431	75	
	N- NH ₄	50	49	19	
	Fe	4.5	11	3	
	В	0.2	0.45	0.03	
	Zn	0.2	0.8	0.1	
Micronutrients	Мо	0.06	< 0.04- 0.07	N/A	
	Mn	0.3	0.54	0.07	
	Cu	0.05	0.12	0.01	
	Na	4.9	24	1	
	CI	8.5	45	20	

* uncertainty is dispersion observed on 3 samples of nutrient solution

TECHNICAL NOTE 96.5

Nutrients		Treatment 1	Treatment 2	Treatment 3			
	Са	1.09±0.03*	0.70±0.02**	0.76±0.02**			
	Mg	0.241±0.004	0.235±0.005	0.252±0.004			
Macronutrients	К	6.5±0.1	4.0±0.1	5.6±0.1			
(% dw)	Р	0.67±0.02	0.50±0.01	0.65±0.02			
	S	0.38±0.01	0.40±0.01	0.40±0.01			
	Ν	5.63±0.05	4.94±0.05	5.34±0.02			
	Fe	19±2	12.9±0.8	12±1			
	В	2.6±0.1	2.4±0.1	2.6±0.1			
	Zn	3.7±0.1	4.3±0.1	4.8±0.2			
Micronutrients (mg % dw)	Мо	0.23±0.01	0.29±0.01	0.27±0.01			
(Mn	8.4±0.3	3.6±0.1	4.6±0.2			
	Cu	0.62±0.01	0.75±0.02	0.82±0.02			
	Na	34±1	55±2	66±2			
* - uncertainty for Treatment 1 was calculated by averaging of errors of Treatment 2 and Treatment 3 as only one sample was taken for analyses for Treatment 1							
for each treatment	atment	for each treatment					

Table 4. Mineral composition of lettuce shoot, harvested at different phases of vegetation

Table 5. Content of elements, obtained from CO_2 and water, in lettuce shoots, harvested at different phases of vegetation (% dw)

Treatment	С	Н
Treatment 1	40.5±0.2	5.45±0.05
Treatment 2	42.5±0.2	5.9±0.1
Treatment 3	40.7±0.2	5.63±0.02

TECHNICAL NOTE 96.5

Nutrients		*Treatmer	nt 1	*Treatment 2		*Treatment 3	
		Average per plant	Total for 169 plants	Average per plant	Total for 20 plants	Average per plant	Total for 80 plants
	Са	0.39±0.01	67±2	6.5±0.2	129±4	23±1	1844±49
	Mg	0.087±0.001	14.8±0.2	2.17±0.05	43±1	7.6±0.1	611±10
Macro-	к	2.34±0.04	395±7	37±1	735±13	171±3	13658±243
nutrients	Р	0.24±0.01	41±1	4.6±0.1	92±2	20±1	1577±49
	S	0.137±0.004	23±1	3.7±0.1	74±2	12.1±0.3	970±24
	Ν	2.04±0.02	345±3	45.5±0.5	910±9	162±1	12955±49
Micro- nutrients	Fe	0.007±0.001	1.2±0.1	0.12±0.01	2.4±0.1	0.37±0.03	30±2
	В	0.00096±0.00004	0.16±0.01	0.022±0.001	0.44±0.02	0.079±0.003	6.3±0.2
	Zn	0.00133±0.00004	0.22±0.01	0.040±0.001	0.79±0.02	0.15±0.01	11.6±0.5
	Мо	0.000084±0.000004	0.014±0.001	0.0027±0.0001	0.053±0.002	0.0082±0.0003	0.66±0.02
	Mn	0.0030±0.0001	0.51±0.02	0.033±0.001	0.66±0.02	0.14±0.01	11.2±0.5
	Cu	0.000225±0.000004	0.038±0.001	0.0069±0.0002	0.138±0.004	0.025±0.001	1.99±0.05
	Na	0.0121±0.0004	2.05±0.07	0.50±0.01	10.1±0.3	2.00±0.05	160±4

Table 6. Mineral composition of lettuce shoot at different phases of vegetation, mg

Nutrients		*Treatment 1		*Treatment 2 and *Treatment 3		
		Applied with nutrient solution, mg	Estimated accumulation in rockwool, roots and trays, mg	Applied with nutrient solution, g	Left in nutrient solution, g	Estimated accumulation in rockwool, roots and liquid loop, g
	Ca	648	581	140	52	86
	Mg	93	78	20	9	10
Macro-	K	926	531	240	86	140
nutrients	Р	231	190	50	9	40
	S	278	255	60	22	37
	N	1018	673	228	77	137
	Fe	21	20	4	2	3
	В	0.9	0.8	0.2	0.1	0.1
	Zn	0.9	0.7	0.2	0.1	0.05
Micro- nutrients	Мо	0.28	0.26	0.06	<0.006 - 0.01	N/A
	Mn	1.4	0.9	0.3	0.1	0.2
	Cu	0.23	0.19	0.05	0.02	0.03
	Na	23	21	5	4	1

Table 7. Estimated accumulation of minerals in rockwool, roots and liquid loop at different phases of lettuce vegetation

15.6 Growth test conclusions

Even though this crop test was the first test after HPC1 installation in the MELiSSA Pilot Plant and lettuce was used as bioindicator of environmental conditions inside the chamber, several conclusions can be drawn from the crop test.

Overall HPC1 performance was good over an eleven day period of closure with a full lettuce crop. The main concern was with the control of humidity. Humidity control can be easily corrected through improvements in chilled water source temperature stability and control system tuning. As the Argus control system was temporary, humidity control will be retested and validated in the following tests with Schneider PLC (to be reported in TN96.11).

The decrease of plant biomass observed in module B, especially for lettuce grown in tray 12-14, while statistically insignificant in variation, show a need to further evaluate environmental conditions along the chamber to detect and to try to evaluate potential reasons for plants growth inhibition. In particular more detailed measurements are required along the chamber since temperature, humidity and PAR sensors are located only in a few points of the chamber.

Accumulation of minerals in the nutrient solution by the end of the test showed that more frequent change of the solution may be required in the further tests. However for life support system, where quantity of wastes should be minimized, this is not an optimal solution. Mineral composition of nutrient solution should be analyzed at least on weekly basis and addition of salts should be done according to analytical results and plants requirements. Also, a reusable alternative to the rockwool substrate should be tested and eventually utilized for future plant cultivation.

TECHNICAL NOTE 96.5

In order to avoid recurrences in data loss as seen in this test, checking of system operation on a regular basis will be required during crop campaigns, including weekends, either directly by attending the laboratory or remotely through networked data connections. In particular, the detection of power supply failure is considered one of the most critical points to be addressed.

16 General Conclusions

The results of Functional Testing of HPC1 showed satisfactory operation of all HCP1 subsystems although some deviations from nominal conditions took place. However those deviations were justified and the chamber was considered ready for further subsystem performance test under full operational conditions.

Crop testing in HPC1 resulted in an excellent crop of lettuce in terms of color, shape and average biomass. Some deviations in plant growth were observed, but these were statistically insignificant and will be monitored in future testing over longer growing periods. Specifically, module B of HPC1 showed a decrease of plants biomass that could be an indicator of heterogeneity of environmental conditions in the chamber

The control of humidity did not perform well due to instability of chilled water temperature and a lack of time to complete control system tuning. These assumptions should be validated in the following tests with Schneider PLC.

In general, the comparison of the obtained results during the crop test performed with the data obtained in UoG in the same chamber (although with a shorter duration of the test) shows an acceptable reproduction of the behaviour demonstrated before the shipment, with the exception of the humidity control (already discussed), and the deviation of the measured parameters respect to the setpoint was even improved respect to the results obtained in UoG (see TN85.83 "Prototype Test Results", section 3.3).

17 Complementary tests : open and closed loop tests with ARGUS controller

17.1 Introduction

UoG tested the HPC1 chamber in the MPP (MELiSSA Pilot Plant) to demonstrate the performance and adherence to the environmental control specifications.

The controller tested is the Argus Controller, a black box control system for the final user.

As the Control System (CS) will be replaced by Schneider Hardware with Sherpa's conrol subroutines. it was decided to take advantage of the testing of the HPC1 with the Argus system to perform simple Open and Closed Loop tests, in order that Sherpa can prepare the tuning of the controllers for the Argus replacement by Schneider controller.

The Black Box HPC control will be replaced with a White Box control system.

The main objective of the control is to pilot the lights. CO_2 concentration. temperature. humidity. conductivity and pH in the plant compartment.

Planned test	Implemented	Dates of test	
Open Loop Tests	en Loop Tests EC control		
	pH control	N	
	CO ₂ control	N	
	T & RH control	Y	April 2 nd –April 3rd
Closed loop tests without crops	EC without crops	Y	April 1 st
	pH without crops	N	
	CO ₂ without crops	Y	April 2 nd
	T & RH without crops	N	
Closed loop tests with crops	CO ₂ with crops	Y	April 23 rd – April 29 th
	T & RH with crops	Y	April 23 rd – April 29 th

The objective was to perform and analyse the proposed complementary tests (see TN96.2 "Functional test Plan and Test protocols with Argus controller", Section 15.6)

Table 8. Summary of complementary tests with Argus controller

The complete set of graphs are annexed to this document in Appendix 2 (corresponding to the document "Sherpa CIVb ArgusTests April09")

104

Some tests were not performed (N in the Implemented column). EC/pH and CO2 tests were more relevant to be done in closed loop in order to evaluate the performance, as open loop tests will be performed with the Schneider Control System.

The main conclusions are pointed out within the description of each test.

17.2 Open Loop on Heat Exchangers valves

No Lights. Qair = 20 m/s

Important fluctuation of source chilled water (between 8 and 10 °C) Average temperature in the chamber is missing

The test should be re performed with Schneider PLC.

The position of the sensor at the output of the exchangers can be changed for control improvement. It will be better to have Air outlet temperature for each exchanger.

The objective of the test was to evaluate the behaviour of T and RH with specific positions of hot and cold valves.

Some data are missing because not recorded or exported in the Argus system.

TECHNICAL NOTE 96.5

Time(0)=02-Apr-2009 18:12:00 Time(end)=03-Apr-2009 02:00:00 sampling=5s

TECHNICAL NOTE 96.5

Time(0)=02-Apr-2009 18:12:00 Time(end)=03-Apr-2009 02:00:00 sampling=5s

Time(0)=02-Apr-2009 18:12:00 Time(end)=03-Apr-2009 02:00:00 sampling=5s

Figures 24, 25 and 26. Trend of the open loop test on heat Exchangers valves and measurements related (T: temperature; RH: relative humidity)

17.3 Closed Loop CO2 April 1st

The test demonstrates clearly the link between CO₂ addition and CO₂ measurement.

HPC1 : ClosedLoopCO2_April1.xls

Figure 27: Trend of the Close loop test on CO₂ (1st April 2009)

Closed Loop EC April 2nd 17.4

The test demonstrates clearly the relation between the nutrient addition and the EC Time(0)=02-Apr-2009 06:59:05 Time(end)=02-Apr-2009 08:29:00

sampling=5s

Figure 28: Trend of the Closed loop test on Electroconductivity (2nd April 2009)

17.5 **Closed Loop Tests with crops**

All graphs are annexed to this document (Appendinx 2, corresponding to the document "Sherpa C4b ArgusTests April09"). This paragraph presents only general remarks and analysis.

From the tests with crops. we can obtain a "reference" for the next step of the project : tests with the Schneider system.

- Test was performed from April 23 16:00 to April 30 15:00
- Test was interrupted from Saturday 25th 6am to Sunday 26th 8pm. due a power micro cut \geq
- > Temperature was over 35 °C in the chamber on Sunday 26th. due to the micro cut power and no control. After inspection, the plants were not damaged.

Figure 29. Change of the conditions of the HPC (temperature and humidity) at the day-night shift

Conditions of the tests :

- Air Flow : 20 m/s
- Nutrient Flow : 5.3 L/mn
- Day : between 6 am to 22 pm
 - 2 Temperature set points

: range 25.6 26.0 °C

- Night : between 22 pm and 6 am
 - 2 Temperature set point : range 19.95 20.35 °C

(Remark : the "Zone B" sensor is installed inside the wall of the chamber and should not be taken into account for the control. Only "A" and "C" zone are controlled)

Figure 32 : Day-->Night 29th April. One hour to decrease temp.

Figure 33: Night-->Day 29thApril. 1/2h to reach the set point

- Humidity is :
 - o day : between 50 and 60 %
 - night : between 70 and 80 %

Figure 35: Humidity during the day

- CO₂ set point is 1000 ppm

Figure 37: Night 28/29 April. CO₂ production

- EC set point : 1.97 ppm
- pH set point : between 5.6 and 6.0

There is an acidification of the nutrient with the crop : .0.1 in 5 hours. The pH is maintained between 5.6 and 5.7

TECHNICAL NOTE 96.5

Time(0)=28-Apr-2009 15:59:50 Time(end)=29-Apr-2009 15:59:40 sampling=10s

Figure 128: 28 April. pH and EC evolution

Figure 39: Chilled Water temperature evolution

18 APPENDIX 1 - Chronology of events for seedling establishment

1) 8.04 Day 0

Preliminary safe treatment (moistening) of 2 Rockwool sheets. Sowing of 196 seeds into 2 Rockwool sheets. Photographing. Placement of the trays with Rockwool sheets into the HPC1. Lighting was enabled. 2 lamps per each module were on (1HPS and 1 MH). PAR intensity on the trays level was 380-420 μ mol·m⁻²·s⁻¹. Temperature set point for the day time was 20°C. but actual temperature was 23°C. Night temperature set point was 20°C.

2) 9.04 Day 1

Measurement of irrigation solution (½ strength nutrient solution) pH. it's 5.87. Watering of each Rockwool sheet with 800 mL of the solution. Photographing.

3) 10.04 Day 2

More than 60 percent emergence could be observed. the plastic cover of each tray was removed. t=21.6°C. Photographing.

4) 11.04 Day 3 (Saturday)

From 6 a.m. the blower in the chamber did not work. Average temperature in the chamber was 34.6°C at day time.

5) 12.04 Day 4 (Sunday)

Temperature in the chamber at day time was 34.6° C until 15:00. At 15:00 the lamps were switched off and the plants were taken out of the chamber. Watering of the plants with 500 mL of solution in total for both Rockwool sheets. Photographing. The trays were introduced into the incubator. PAR intensity in the incubator on the plants level was 25-50 μ mol·m⁻²·s⁻¹. temperature was 24°C.

6) 13.04 Day 5

Plants were maintained in the incubator.

7) 14.04 Day 6

At 10:00 a.m the trays with the plants were placed back into the chamber. t=21°C. 2 lamps per each module on. PAR intensity on the trays level was 380-420 μ mol·m⁻²·s⁻¹. Photographing. Measurement of the solution pH. it's 5.82. Watering of each Rockwool sheet with 800 mL of solution.

8) 15.04 Day 7

Photographing. 9) **16.04 Day 8** Photographing. Watering of each Rockwool sheet with 900 mL of nutrient solution.

10) 17.04 Day 9

TECHNICAL NOTE 96.5

At 10:15 3d lamp in each module of the chamber was switched on. day temperature set points: heating was 25.8°C. cooling was 26.2°C. Night temperature control enabled.

At 11:28 day temperature set points were changed: heating was 25.6°C. cooling was 26.0°C as temperature in module A and module C was higher than 26.0°C.

At 12:15 the trays were dislocated from module A to module C since temperature in module C was lower than in module A (25.3°C and 26.8°C respectively) and PAR intensity was higher (630 μ mol·m⁻²·s⁻¹ in module C and 540 μ mol·m⁻²·s⁻¹ in module A).

At 12:25 interior and exterior doors were closed. Enabled CO₂ control. CO₂ setpoint 1000 ppm. MFC setpoint – 20%.

At 15:30 activated circulation of the nutrient solution in the chamber in order to increase relative humidity (it was below 60%) and to decrease VPD (it was higher than 14 mb). The doors were opened in order to move the trays for solution recirculation.

At 17:05 CO₂ control was enabled again.

11) 18.04 Day 10 (Saturday)

Chamber was closed. control system was enabled.

12) 19.04 Day 11 (Sunday) Chamber was closed. control system was enabled.

13) 20.04 Day 12

At 9:32 CO₂ control was disabled. The chamber was opened. photographing of the plants. In one of the trays half of Rockwool sheet was contaminated with algae. In the second tray beginning of contamination was observed. Measurement of the solution pH. it's 5.83. Watering of the plants with the solution. approximately 1L per each tray.

At 16:36 the chamber was closed and CO₂ control was enabled.

14) 21.04 Day 13 Chamber was closed. control system was enabled.

15) 22.04 Day 14

At 14:40 CO₂ control was disabled, the chamber was opened. Watering of the plants with the solution. 900 mL per each tray. Photographing. The plants were taken out of the chamber. At 15:00 the chamber was closed and CO₂ control was enabled in order to check CO₂ leakage in the chamber.

At 19:11 nutrient pump was deactivated.

16) 23.04 Day 15

Beginning of 1-week crop test.

19 APPENDIX 2 – Lettuce raw data

Fresh and dry weight of lettuce leaves, harvested after 7 days of closure (30.04.2009)								
# of tray	# of plant	Fresh weight, g	# of sample for lyophilization	Dry weight, g				
1	3	8.70	1	2.90				
2	3	11.71						
3	3	10.99						
4	3	12.79	2	3.02				
5	3	6.77						
6	3	12.39						
7	3	10.49	3	2.77				
8	3	9.84						
9	3	7.80						
10	3	8.39	4	2.28				
11	3	8.12						
12	3	5.48						
13	3	6.22	5	2.48				
14	3	9.34						
15	3	8.89						
16	3	9.17	6	3.21				
17	3	10.86						
18	3	13.56						
19	3	9.35	7	1.77				
20	3	10.29						

TECHNICAL NOTE 96.5

Dry weight of lettuce leaves after lyophilization, harvested after 11 days of closure (4.05.2009)							
# of tray	# of plant	# of sample for lyophilization	Dry weight, g				
1	4	1	10.52				
2	2						
3	4						
4	2	2	9.27				
5	4						
6	2						
7	4	3	9.04				
8	2						
9	4						
10	2	4	8.64				
11	4						
12	2						
13	4	5	7.81				
14	2						
15	4						
16	2	6	9.68				
17	4						
18	2						
19	4	7	5.69				
20	2						

TECHNICAL NOTE 96.5

T LESIT ATTU ULY W			1 al vesteu 011 4.03.2009)
# of tray	# of plant	Fresh weight, g	Dry weight, g
	1	29.3	2.25
1	2	14.53	1.17
ľ	4	44.19	
	5	37.07	0.95
	1	47.77	3.04
2	2	54.16	
2	4	52.73	3.51
	5	38.23	2.37
	1	47.26	3.27
2	2	41.44	2.8
5	4	50.21	
	5	52.16	3.32
	1	52.54	3.55
4	2	31.89	
4	4	49.34	3.24
	5	41.47	2.84
	1	41.9	2.78
_	2	47.48	3.29
5	4	42.18	
	5	50.82	3.53
6	1	39.01	2.59
	2	42.51	
	4	49.09	3 28
	5	55.56	3.72
7	1	33.42	2 27
	2	51.65	3.56
	4	47.05	0.00
	5	54 84	3 53
	1	34.89	2 61
	2	46 55	2.01
8	4	38.53	2 85
	5	34.16	2.00
	1	<u> </u>	2.07
	2	<u> </u>	2 07
9	<u> </u>	33.57	2.31
·	5	34 83	2 50
	1	38 71	2.08
-	2	36.97	2.12
10	<u> </u>	30.07	2.61
·	4 5	<u> </u>	2.01
		42.29	2.00
	1 2	50.64	2.01
11	Δ		J.44
	4	<u> </u>	2.02
	C	43.33	2.83
	1	35.85	2.42
12	2	38.15	0.00
	4	37.6	2.68
46	5	22.96	1.75
13	1	25.23	1.86
	2	32 99	」 271

This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization Memorandum of Understanding 19071/05/NL/CP

121

TECHNICAL NOTE 96.5

	4	41.31	
	5	38.1	2.54
	1	40.06	2.59
14	2	42.49	
14	4	34.73	2.84
	5	41.56	2.62
	1	38.47	2.81
15	2	43.12	2.7
15	4	39.81	
	5	33.49	2.32
	1	32.77	2.44
16	2	42.17	
	4	48.09	2.97
	5	36.72	2.57
	1	42.83	2.78
17	2	45.54	3.35
	4	50.28	
	5	44.51	2.93
	1	41.09	2.77
18	2	44.4	
10	4	48.33	3.03
	5	50.03	3.18
	1	41.52	2.71
10	2	44.18	2.74
10	4	50.52	
	5	38.22	2.45
	1	43.29	2.8
20	2	41.29	
20	4	35.47	2.4
	5	34.21	2.2

Concentration of minerals and trace elements in the nutrient solution after 11 days of closure (mg/L)																
# of samples Ca Mg K Na Cu Mn B Zn Mo Fe P S Cl N- NO2 N- NO3 N- NH4									N- NH4							
1	267	52	498	23	0.11	0.48	0.42	0.73	< 0.04	8	42	125	21	0.02	371	32
2	455	66	615	27	0.14	0.67	0.52	1.00	0.07	17	82	165	85	0.95	579	86
3	254	52	502	23	0.12	0.47	0.42	0.75	< 0.04	8	39	123	27	0.02	342	29

TECHNICAL NOTE 96.5

N	Mineral composition of lettuce shoot, harvested at different phases of vegetation													
		Mineral content (% dw)												
Treatment	# of samples ⁴	Ca	Mg	к	Na	Р	s	N	Fe	В	Zn	Мо	Mn	Cu
¹ Treatment 1	1	1.09	0.24	6.45	0.03	0.67	0.38	5.63	0.02	0.003	0.004	0.0002	0.008	0.001
	1	0.73	0.23	4.22	0.06	0.52	0.39	4.82	0.01	0.002	0.004	0.0003	0.004	0.001
	2	0.71	0.24	3.83	0.06	0.52	0.39	5.05	0.01	0.002	0.004	0.0003	0.004	0.001
2	3	0.73	0.25	4.00	0.05	0.53	0.42	5.10	0.01	0.003	0.005	0.0003	0.003	0.001
² Treatment 2	4	0.74	0.25	3.92	0.05	0.53	0.44	4.87	0.01	0.003	0.005	0.0003	0.004	0.001
2	5	0.67	0.23	3.70	0.05	0.45	0.39	4.89	0.01	0.002	0.004	0.0003	0.003	0.001
	6	0.72	0.24	4.22	0.05	0.51	0.40	4.79	0.02	0.003	0.004	0.0003	0.004	0.001
	7	0.63	0.21	4.03	0.05	0.47	0.37	5.09	0.01	0.002	0.004	0.0003	0.003	0.001
	1	0.68	0.23	5.44	0.06	0.63	0.38	5.35	0.01	0.002	0.004	0.0003	0.004	0.001
	2	0.71	0.25	5.32	0.06	0.61	0.38	5.39	0.01	0.002	0.004	0.0002	0.004	0.001
3	3	0.75	0.25	5.46	0.07	0.60	0.39	5.28	0.01	0.003	0.005	0.0003	0.004	0.001
³ Treatment	4	0.79	0.26	5.76	0.07	0.66	0.41	5.33	0.01	0.003	0.005	0.0003	0.005	0.001
5	5	0.76	0.26	5.62	0.06	0.62	0.39	5.33	0.01	0.003	0.004	0.0003	0.005	0.001
	6	0.81	0.25	6.10	0.07	0.70	0.42	5.23	0.01	0.003	0.005	0.0003	0.005	0.001
	7	0.82	0.27	5.74	0.07	0.72	0.44	5.45	0.02	0.003	0.006	0.0003	0.005	0.001
1. seedl	ings of le	ttuce	(shoo	ts) in a	age o	f 15 d	ays af	ter se	eds s	owing,	the res	st of the	seedli	ngs
(total 2. lettuc test	ed 69) afi e shoot, l	ter cro locate	op test d in th	t start ne cer	up ntral ra	aw alo	ng HF	PC1 (p	plant 3	8), harv	rested	after 7 d	lays of	crop

3. lettuce shoot, plant 2 (samples were taken from trays 2,4,6,8,10,12,14,16,18, 20) and plant 4 (samples were taken from trays 1,3,5,7,9,11,13,15,17,19), harvested after 11 days of crop test

4. number of samples corresponds to the number of sample for lyophilization (see tables 1 and 2 of Appendix 8)

Content of elements, obtained from CO_2 and water, in lettuce shoots, harvested at different phases of vegetation (% dw)

Treatment	# of samples ⁴	# of replications	С	Н
¹ Treatment 1	1	1	40.32	5.38
	-	2	40.69	5.49
		3	40.53	5.48
² Treatment 2	1	1	42.60	5.85
		2	42.90	5.92
		3	42.76	5.91
	2	1	43.18	5.99
		2	42.99	5.95
		3	43.26	5.99
	3	1	43.12	6.05
		2	42.86	5.93
		3	42.87	5.95
	4	1	42.37	6.04
		2	42.48	6.05
		3	42.27	6.03
	5	1	42.77	6.03
		2	42.87	6.05
		3	42.60	6.01
	6	1	42.12	6.00
		2	42.11	6.04
		3	42.29	6.05
	7	1	42.04	4.97
		2	40.95	5.63
		3	42.15	5.79
³ Treatment 3	1	1	41.06	5.67
		2	41.04	5.69
		3	40.92	5.73
	2	1	41.65	5.55
		2	41.50	5.69
		3	41.23	5.71
	3	1	40.56	5.53
		2	40.51	5.72
		3	39.79	5.60
	4	1	40.31	5.66
		2	40.55	5.69
		3	40.63	5.62
	5	1	40.99	5.44
		2	40.51	5.61

This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization Memorandum of Understanding 19071/05/NL/CP

124

TECHNICAL NOTE 96.5

	3	40.48	5.64
6	1	40.62	5.55
	2	40.94	5.64
	3	40.78	5.62
7	1	40.02	5.63
	2	39.85	5.53
	3	40.26	5.67

20 APPENDIX 3 – Extensive data for 1 week crop test

(From the document "Sherpa C4b ArgusTests April09")

Time(0)=23-Apr-2009 15:59:50 Time(end)=24-Apr-2009 15:59:40 sampling=10s

HPC1 : HPC_CROPTEST_April23_24h.xls

TECHNICAL NOTE 96.5

Time(0)=23-Apr-2009 15:59:50 Time(end)=24-Apr-2009 15:59:40 sampling=10s

HPC1 : HPC_CROPTEST_April23_24h.xls

Time(0)=23-Apr-2009 15:59:50 Time(end)=24-Apr-2009 15:59:40 sampling=10s

HPC1 : HPC_CROPTEST_April23_24h.xls

TECHNICAL NOTE 96.5

Time(0)=23-Apr-2009 15:59:50 Time(end)=24-Apr-2009 15:59:40 sampling=10s

HPC1 : HPC_CROPTEST_April23_24h.xls

TECHNICAL NOTE 96.5

Time(0)=23-Apr-2009 15:59:50 Time(end)=24-Apr-2009 15:59:40 sampling=10s

HPC1 : HPC_CROPTEST_April23_24h.xls

TECHNICAL NOTE 96.5

Time(0)=23-Apr-2009 15:59:50 Time(end)=24-Apr-2009 15:59:40 sampling=10s

TECHNICAL NOTE 96.5

Time(0)=23-Apr-2009 15:59:50 Time(end)=24-Apr-2009 15:59:40 sampling=10s

TECHNICAL NOTE 96.5

Time(0)=24-Apr-2009 15:59:50 Time(end)=25-Apr-2009 15:59:40 sampling=10s

HPC1 : HPC_CROPTEST_April24_24h.xls

TECHNICAL NOTE 96.5

Time(0)=24-Apr-2009 15:59:50 Time(end)=25-Apr-2009 15:59:40 sampling=10s

Time(0)=24-Apr-2009 15:59:50 Time(end)=25-Apr-2009 15:59:40 sampling=10s

HPC1 : HPC_CROPTEST_April24_24h.xls

TECHNICAL NOTE 96.5

Time(0)=24-Apr-2009 15:59:50 Time(end)=25-Apr-2009 15:59:40 sampling=10s

HPC1 : HPC_CROPTEST_April24_24h.xls

TECHNICAL NOTE 96.5

Time(0)=24-Apr-2009 15:59:50 Time(end)=25-Apr-2009 15:59:40 sampling=10s

Time(0)=24-Apr-2009 15:59:50 Time(end)=25-Apr-2009 15:59:40 sampling=10s

TECHNICAL NOTE 96.5

Time(0)=24-Apr-2009 15:59:50 Time(end)=25-Apr-2009 15:59:40 sampling=10s

HPC1 : HPC_CROPTEST_April24_24h.xls

TECHNICAL NOTE 96.5

Time(0)=26-Apr-2009 15:59:50 Time(end)=27-Apr-2009 15:59:40 sampling=10s

Time(0)=26-Apr-2009 15:59:50 Time(end)=27-Apr-2009 15:59:40 sampling=10s

Time(0)=26-Apr-2009 15:59:50 Time(end)=27-Apr-2009 15:59:40 sampling=10s

HPC1 : HPC_CROPTEST_April26_24h.xls

TECHNICAL NOTE 96.5

Time(0)=26-Apr-2009 15:59:50 Time(end)=27-Apr-2009 15:59:40 sampling=10s

HPC1 : HPC_CROPTEST_April26_24h.xls

TECHNICAL NOTE 96.5

Time(0)=26-Apr-2009 15:59:50 Time(end)=27-Apr-2009 15:59:40 sampling=10s

HPC1 : HPC_CROPTEST_April26_24h.xls

TECHNICAL NOTE 96.5

Time(0)=26-Apr-2009 15:59:50 Time(end)=27-Apr-2009 15:59:40 sampling=10s

HPC1 : HPC_CROPTEST_April26_24h.xls

Time(0)=26-Apr-2009 15:59:50 Time(end)=27-Apr-2009 15:59:40

sampling=10s

TECHNICAL NOTE 96.5

Time(0)=27-Apr-2009 15:59:50 Time(end)=28-Apr-2009 15:59:40 sampling=10s

TECHNICAL NOTE 96.5

Time(0)=27-Apr-2009 15:59:50 Time(end)=28-Apr-2009 15:59:40 sampling=10s

Time(0)=27-Apr-2009 15:59:50 Time(end)=28-Apr-2009 15:59:40 sampling=10s

HPC1 : HPC_CROPTEST_April27_24h.xls

TECHNICAL NOTE 96.5

Time(0)=27-Apr-2009 15:59:50 Time(end)=28-Apr-2009 15:59:40 sampling=10s

HPC1 : HPC_CROPTEST_April27_24h.xls

TECHNICAL NOTE 96.5

Time(0)=27-Apr-2009 15:59:50 Time(end)=28-Apr-2009 15:59:40 sampling=10s

HPC1 : HPC_CROPTEST_April27_24h.xls

TECHNICAL NOTE 96.5

Time(0)=27-Apr-2009 15:59:50 Time(end)=28-Apr-2009 15:59:40 sampling=10s

HPC1: HPC_CROPTEST_April27_24h.xls

TECHNICAL NOTE 96.5

Time(0)=27-Apr-2009 15:59:50 Time(end)=28-Apr-2009 15:59:40 sampling=10s

TECHNICAL NOTE 96.5

Time(0)=28-Apr-2009 15:59:50 Time(end)=29-Apr-2009 15:59:40 sampling=10s

HPC1 : HPC_CROPTEST_April28_24h.xls

TECHNICAL NOTE 96.5

Time(0)=28-Apr-2009 15:59:50 Time(end)=29-Apr-2009 15:59:40 sampling=10s

Time(0)=28-Apr-2009 15:59:50 Time(end)=29-Apr-2009 15:59:40 sampling=10s

HPC1 : HPC_CROPTEST_April28_24h.xls

TECHNICAL NOTE 96.5

Time(0)=28-Apr-2009 15:59:50 Time(end)=29-Apr-2009 15:59:40 sampling=10s

HPC1 : HPC_CROPTEST_April28_24h.xls

TECHNICAL NOTE 96.5

Time(0)=28-Apr-2009 15:59:50 Time(end)=29-Apr-2009 15:59:40 sampling=10s

HPC1 : HPC_CROPTEST_April28_24h.xls

TECHNICAL NOTE 96.5

Time(0)=28-Apr-2009 15:59:50 Time(end)=29-Apr-2009 15:59:40 sampling=10s

HPC1 : HPC_CROPTEST_April28_24h.xls

This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization Memorandum of Understanding 19071/05/NL/CP

160

Time(0)=28-Apr-2009 15:59:50 Time(end)=29-Apr-2009 15:59:40 sampling=10s

TECHNICAL NOTE 96.5

Time(0)=29-Apr-2009 16:00:00 Time(end)=30-Apr-2009 15:59:50 sampling=10s

HPC1 : HPC_CROPTEST_April29_24h.xls

Time(0)=29-Apr-2009 16:00:00 Time(end)=30-Apr-2009 15:59:50 sampling=10s

Time(0)=29-Apr-2009 16:00:00 Time(end)=30-Apr-2009 15:59:50 sampling=10s

HPC1 : HPC_CROPTEST_April29_24h.xls

TECHNICAL NOTE 96.5

Time(0)=29-Apr-2009 16:00:00 Time(end)=30-Apr-2009 15:59:50 sampling=10s

HPC1 : HPC_CROPTEST_April29_24h.xls

TECHNICAL NOTE 96.5

Time(0)=29-Apr-2009 16:00:00 Time(end)=30-Apr-2009 15:59:50 sampling=10s

TECHNICAL NOTE 96.5

Time(0)=29-Apr-2009 16:00:00 Time(end)=30-Apr-2009 15:59:50 sampling=10s

HPC1 : HPC_CROPTEST_April29_24h.xls

Time(0)=29-Apr-2009 16:00:00 Time(end)=30-Apr-2009 15:59:50 sampling=10s

TECHNICAL NOTE 96.5

21 APPENDIX 4 – List of variables Argus/MPP/Simplified

This table is the correspondence between the Argus Names (in files). the MPP tag names and the "Simplified Names" used for the graphs.

#	Argus File Tags	MPP Tag	MPP Tag Description	Simplified Name	Unit
1	DateTime	DateTime	DateTime	DateTime	
-	IO 1-8: A T1		Temperature A1 associated with		
2	Final Reading	TT 4112 01	humidity	ТА	°C
	IO 1-8; B T1		Temperature B1 associated with		
3	Final Reading	TT_4112_02	humidity	ТВ	°C
	IO 1-8; C T1		Temperature C1 associated with		
4	Final Reading	TT_4112_03	humidity	TC	°C
	IO 1-7; A RH		Humidity A1 associated with		
5	Final Reading	AT_4112_01	temp A1	RHA	%
	IO 1-7; B RH		Humidity B1 associated with		<i></i>
6	Final Reading	AI_4112_02	temp B1	RHB	%
-	IO 1-7; C RH	AT 4440 00	Humidity C1 associated with	DUO	0/
1	Final Reading	AT_4112_03	temp C1	RHC	%
	IU 1-2; A PAR				
Q	Light Final Reading	PT 4104 01	PAP Sensor A		
0		1(1_4104_01	TAIX Selisor - A		μL
	Light				
9	Final Reading	RT 4104 02	PAR Sensor - B	PARB	υF
	IO 1-2: C PAR			1740	
	Light				
10	Final Reading	RT_4104_03	PAR Sensor - C	PARC	μE
	IO 1-3; Lamp				
	Loft A				
	Temperature				
11	Final Reading	TT_4105_01	Light Loft Temperature sensor A	TLoftA	°C
	IO 1-3; Lamp				
	Loft B				
10	Temperature	TT 4405 00		T I ((D	
12	Final Reading	11_4105_02	Light Loft Temperature sensor B	LOTTB	Ĵ
	10 1-3; Lamp				
	Tomporaturo				
13	Final Reading	TT 4105 03	Light Loft Temperature sensor C	TL offC	°C
10	IO 1-1: Ambient	11_4100_00		TLOILO	
	T 2		Temperature C4> Reaffected		
14	Final Reading	TT 4112 12	to External T	TAmb2	°C
<u> </u>	IO 1-9; Pressure				-
	C Ambient				
	Final Reading		Pressure sensor for airlock C>		
15	(HiRes)	PT 4103 01	Reaffected to External Pressure	PAmb	kPa

TECHNICAL NOTE 96.5

Í.	IO 1 0. Pressure	1	I	1	
	$\Delta ir l ock \Delta$				
	Final Reading				
16	(HiRes)	PT 4102 01	Pressure sensor for airlock A	PA	kPa
	IO 1-9: Pressure	1 1_1102_01		17.	Ni u
	Main Volume				
	Final Reading				
17	(HiRes)	PT 4114 01	Growing Area Pressure	PChamber	kPa
18		TT 4112 AVG	T Average $(A+C)$ in chamber		°C
10	IO 1-6: Chilled	<u>11_4112_AVO</u>		1710	0
	Water Source T		Temperature for facility chilled		
19	Final Reading	TT 4112 13	water	TCW	°C
10		11_4112_10		1000	0
	Water Loop T				
20	Final Reading	TT 4112 21	Inlet water Chilled Exchanger	TInletCW	°C
20	IO 1-3: Chilled			111101011	Ŭ
	Water Exit T				
21	Final Reading	TT 4112 17	Chilled Exit temperature	TOuletCW	°C
·	IO 1-7: Hot				
	Water Source T		Temperature for facility hot		
22	Final Reading	TT 4112 14	water line	тнw	°C
	IO 1-5: Hot				_
	Water Loop T				
23	Final Reading	TT 4112 22	Inlet water Hot Exchanger	TInletHW	°C
	IO 1-3; Hot				
	Water Exit T				
24	Final Reading	TT_4112_18	Hot Exit temperature	TOuletHW	°C
	IO 1-7;				
	Condensor Coil				
	T1 Final				
25	Reading	TT_4112_15	Chilled coil surface temperature	TChilCoil1	°C
	IO 1-7; Heater				
	Coil T 1				
26	Final Reading	11_4112_16	Heating coil surface temperature	THeatCoil1	Ű
	10 1-4; Nutrient		- · · · ·		
07	Solution I	TT 4100 04	respective sensor for solution	Thutsiant	°C
21		11_4109_01		rinutrient	U U
20	TO 1-4; pH	AT 4107 04	nH consor	ы	
Zõ		AI_410/_01			
20	Final Reading	AT 4109 01	Electrical Conductivity of putricat	EC	ms
29					
	Flow				
30	Final Reading	FT 4106 01	Outlet nutrient flow sensor	ONutrient	l /mn
	IO 1-5: Air Flow			Grunon	
31	Final Reading	FT 4111 01	Air velocity sensor	Qair	m/s
					113
	Reading				
32	Final Reading	AT 4113 01	CO2 Analyser	CO2	ppm

TECHNICAL NOTE 96.5

		S3CV 4112 0			
33	Cold Valve	1_MV	Chilled Water Control Valve	CWValve	%
		S3CV_4112_0			
34	Hot Valve	2_MV	Hot Water Control Valve	HWValve	%
35	Heat S.P.	TT_4112_SP1	Temp. SP. High Value	TSPHigh	°C
	Diurnal				
	Setpoints;				
	Scheduled				
36	Setpoint	TT 4112 SP2	Temp, SP, Low Value	TSPLow	°C
	IO 1-1; Ambient				
	T 1		Temperature A4> Reaffected		
37	Final Reading	TT_4112_06	to External T	TAmb1	°C
	LL; IO 1-4; Hot	GP 4112 01			
20	Loop Pump	MV	Chilled water Circulation nump	Dump CW/	
30	IO 1-4: Chilled		Chilled water Circulation pump	PumpCvv	
	Loop Pump	GP_4112_02_			
39	Final State	MV	Hot water Circulation pump	PumpHW	
	IO 1-8; CO2				
	MFC Flow				
40	Final Reading	FC_4113_01	CO2 Mass Flow	CO2MFlow	L/mn
	IO 1-7; Heater		Outlot Air (TO DE		
11	Final Reading	TT 4112 20	CONFIRMED) bot exchanger	TChilCoil2	°C
	IO 1-8 [.]	11_4112_20	CONTINUED). Not exchange		0
	Condensor Coil		Outlet Air (TO BE		
	T 2 Final		CONFIRMED). chilled		
42	Reading	TT_4112_19	exchanger	THeatCoil2	°C
43	CO2 setpoint	AT_4113_SP	CO2 Setpoint	CO2SP	ppm
		AT_4113_Tim		0007.00	
44	CO2 Timer	er	CO2 Timer	CO21mr	S
45	MEC Setpoint	SP	CO2 Mass Flow set point	CO2MECSP	%
46	NS EC setpoint	AT 4108 SP	FC SP	ECSP	mS
47	NS Acid setpoint	AT 4107 SP1	Acid SP	AcidSP	
	NS Base				
48	setpoint	AT_4107_SP2	Base SP	BaseSP	
	NS; Nutrient				
	A+B Program;				
	Counter/Accumu				
49	Active	CI 4108 CntA	Counter Valve A	ValveACnt	s
	NS; Nutrient				
	A+B Program;				
	Counter/Accumu				
	lator Valve B				
50	Active	CL4108_CntB	Counter Valve B	ValveBCnt	S

TECHNICAL NOTE 96.5

	NS; Nutrient				
	Counter/Accumu				
	lator Acid Valve				
51	Active	CI 4107 CntA	Counter Valve Acid	ValveAcidCnt	s
• •	NS: Nutrient				-
	BASE Program:				
	Counter/Accumu				
	lator BASE				
52	Valve Active	CL4107_CntB	Counter Valve Base	ValveBaseCnt	s
	NS Condensate			CondPumpT	
53	timer	CL4110_Timer	Condensate Pump timer	mr	s
	NS Condensate			CondPumpCn	
54	counter	CL4110_Cnt	Condensate Pump counter	t	s
55	A VPD	CL4112_VPDA	VPD A	VPDA	mbar
56	B VPD	CL4112_VPDB	VPD B	VPDB	mbar
		CL4112_VPD			
57	C VPD	С	VPD C	VPDC	mbar

Not I/O variable. HMI or Control Parameters

22 Comments

Functional Testing with Argus Controller – As-run procedures, Test results and final Test report

Comments

General comments

1 The TNs are rather comprehensive however we miss basically some evaluation of the results and overall conclusions eg comparison with results of functional tests performed in Guelph, comparison between results obtained with Argus and with Schneider, overall conclusion on the functional testing of the chamber

OK. Conclusion added in Section 16; comparison with tests performed in UoG is briefly explained in the Conclusion chapter. Comparison with Schneider will be included in TN96.11.

2 Some TNs and especially TN 96.5 are looking like compilation of inputs from several partners however without any link in between; some curves are even duplicated from one chapter to the other. The added-value of confronting different "views" (i.e control point of view, growing plant point of view...) of the chamber is missing. As a result the TNs look fuzzy and are very difficult to read and to use

The writing of TN96.5 has been improved for clarity; duplicated curves removed and confronting views foreseen more in last TNs (96.12 and 13)

3 Sometimes we do not understand the logic followed to fill in the as-run procedures, see detailed comments on each TN

OK, amended in each case

4 There is a general mistake on EC unit, to be expressed in mS/cm or dS/m (these two units are equivalent)

OK, amended in each case

5 Date and time in the as-run procedures are missing; in TN 96.5, the term ESA/UoG representative should be updated as discussed previously

OK, amended in each case

6 The wording of the introduction, e.g. considered by ESA and SHERPA as a black box.... Should be rephrased.

OK, rephrased.

Detailed comments

Page/paragraph 8-9/index	Comment Graphs to be removed from the index table
12/ table	Done There is s problem on the EC unit which should be in mS/cm or dS/m not in dS/cm; for you rinformation, the annex to appendix 1 of the RFQ 3-11515 is given in a separate doc.
12/ Section 1.5	Done Please clarify the title 'Additional testing' ; additional to functional testing as performed in UoG?
	UoG: As requested by SHERPA, it was decided to take advantage of the testing of the HPC1 with the Argus sytem to perform simple Open and Closed Loop tests to characterize the Argus contol system so that Sherpa could prepare the tuning of the controllers for the Argus replacement by Schneider controller - this detail has been added and the actual documents that outlined the procedures are now appended to the TN to improve clarity.
21	MPP : the title of previously named part 15 was "complementary tests : open and closed loop tests with ARGUS controller" ; another possibility is :Additional testing to prepare the switch to Schneider control system When there is mention to a required/nominal value, we understand the corresponding measured/calculated cell should contain a value. Please clarify or update when appropriate along the full TN
30/item 8 and 10	Done Please make a link to the deviation ; otherwise the test should be reported as Failed
31/Section 5.13	Done The justification of the deviation should be clarified; why are "no changes needed"?
	UoG: no changes were required because it does not matter if the signal goes from 0 to 5 or from 5 to 0. there is a distinct change in the signal and that is all that is required for the control system.
36-38	MPP: Clarified in the text In mosts cases the measured/calculated column shoulkd be filled in; please update
37/ item 19 to	Done Please include reference to the deviation
46/table	Done Can you clarify why you needed an O2 analyzer; to verify the measurement of the PO2?

The clarification is given in the table (p.42)

76/Section 14.5 Please clarify that VPD is neither controlled nor even measured (This is what is understood from other TNs); please correct EC unit; please clarify for pH if there is a set-point or not, and explain why

During the test with Argus controller VPD is the control point for atmospheric water content rather than RH. VPD is a calculation, RH was measured. EC unit is corrected; the set-point for pH was 5.8 and it is indicated in TN

74/Section 14 Please include reference to the TNs about cultivation protocols, sampling protocols...please clarify somewhere the phases (treatments?) of the test, i.e. how many seeds, renewal of the nutrient solution.....as a general remark we miss precise data all along the reporting of this test, e.g. the raw data to produce the graphs, how many tissue samples, their weight, the analytical methods....

The reference to the TNs about cultivation protocols, sampling protocols is added; quantity of seeds is given in TN96.5, page 73; renewal of the nutrient solution is not required for this test, this information is given on page 73; raw data of plants weight, minerals content in the nutrient solution and mineral and elemental composition of plants is given in the end of TN 96.5, Appendix 4, as well as quantity of tissue samples; information about analytical methods is given in TN 96.4

77/1. We understood the separation of roots from rockwool was rather impossible; please calrify and report

Clarification is given on page 75 of TN 96.5

77/2. Aproximately 1 to 14 days: indeed rather approximative, please clarify this range

Done

78/1st par. "Was observed" please precise if it was a visual observation only

Done

78 The scheduled completion date is sometimes May 4, sometimes April 30; please clarify

Done

78/2nd par "Was apparently unaffected"; please precise if visual inspection only

Done

79 Please precise which 20 plants have been harvested e.g. which trays...please explain why 20 plants were harevested and why we decided to continue with the other remaining 80.

Done

79 and fol. The complete paragraph 14.8 shoud be reorganized . There is mix of results, conclusions all along this paragraph, without any outline/numbering to discriminate

Agreed. The TN has been updated to improve clarity.

175

TECHNICAL NOTE 96.

80 and fol There are discrepancies between the figures numbers in the legend and in the text; please verify and update

Done

80 We don't have the figures with water temperature

There are figures 2 and 3 with water temperature

80/table 2 Please refer somewhere or include a diagram with the positioning of the sensors; the full 11days was performed only with 80 plants, right? Please update the title . I see a set-point at 5.8 for pH (see my remark on page 76/14.5

> We now refer in Table 2 description to the PID of the chamber, where the location of the different sensors is shown; and we can even include the PID as an annex to the TN

The title is updated; set point was 5.8

Please clarify what is meant by Average (I anticipate average of all sensors of 81/fig.2 the chamber); do we have discrepancies over the chamber, can we explain the amplitudes of the peaks?; can we have a view over many days as well?

> UoG: Average is not of all sensors, only the ones used for control. Amplitudes of which peaks - HPC T, Hot water, Chilled water, and ambient T are displayed in this graph. There were no peaks wrt the HPC control other than during periods of lost central control of chilled or hot water.

Can you confirm the profile is the same for other days? 82/fiq3

UoG: Yes (data not provided)

83/fiq4 Can you provide as well a zoom of some parts?

> UoG: sure. Please specify what is required. Note that all the data is available in the accompanying data files.

> MPP: The zoom is provided in Figure 5, isn't it? Apart of the transition, is there any other relevant part?

84 Illustration: do you mean figure 5?

corrected, it refers to Figure 7 in fact 85 In the text you mention 2.0+/- 0.7 mS/cm; it seems low when looking at the curve; can you please clarify?

> UoG: 2.0 +/- 0.07 mS It is correct - note that the control line indicated is at 1.97, not 2.0. We have added an additional decimal place which results in an EC of 2.04

85 Can you explain the pH profile at aournd 6-7 days of plant growth?

Explained in the text

TECHNICAL NOTE 96.5

86 Can you please provide more information on how you obtain the profile of figure 7; is it the result of condensate volume measurement? Please note that the water you collect is not at potable water quality. The volume seems rather high; do we have any "blind test" to discriminate between evapotranspiration of plants and normal condensation?Did you record the residual volume of nutrient solution?

UoG: water is collected as condensate during dehumidification. Why is it not potable? The collected water is in contact with food grade wetted surfaces. If containment systems are cleaned prior to collection, the water is suitable for consumption.

MPP : We suppose you refer to Figure 9. Not blind test was performed to discriminate evapotranspiration/ condensation. Text rephrased to better explain it. Residual volume of nutrient solution was not recorded, but all the condensate collected in the condensate tank was transferred to the nutrient solution reservoir. The measurement of the volume of condensed water is made by a counter summing up the number of times the high level switch of the condensate tanks is reached, before the content of condensates tank is reinjected into the nutrients tank by the pump CP_4110_01. The volume between the high level and low level switches in the condensate tank corresponding to one cycle of filling/emptying was measured to be 1L.

It is stated that the room temperature was sometimes exceeding the control temperature inside the chamber. Although we understand that there are some physical limitations of the heat removal capacity, there should not be a direct influence of the room temperature if the chamber is tight and well insulated. Can you confirm/clarify?

UoG: The chamber was designed to operate within a property controlled human habitable building environment. The chamber is tight but insulation was minimized due to building size limitations.

MPP: Text rephrased, stating that in fact the ambient conditions didn't jeopardise the temperature control inside the chamber within the current test. You state 100 plants of 11 days however we have only 80, haven't we? You

mention that no argus control tuning has been performed because of schedule constraints: can you please confirm?Can you please include where necessary the profile o fthe chilled water temperature?Last paragraph looks like UoG conclusion to UAB and should be rephrased/ amended by UAB

UoG: Tuning was not performed because we were running out of time to complete everything in a reasonable time after all the infrastructure delays

MPP: 100 plants were changed by 80 plants; last paragraph is rephrased (now in Section 15.6); profile of chilled water temp. is shown in Fig. 2 and 3
88 and fol. We miss somewhere the tables with the raw data (to be placed in annex?) I guess the 20 plants harvested after 7 days were all plant#3 along the chamber; please clarify. The titles of the figures should be self understandable, e.g. precising the duration of the growth period... to ease comparison with others

The tables with raw data are added to Appendix 2; the other comments are

177

This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization Memorandum of Understanding 19071/05/NL/CP

86

87

102

TECHNICAL NOTE 96.5

taken into account and corrections/additions are made

89 I do not understand the consistency between figure 12 and 13 b. It would be helpful to start fig 13 with fresh biomass instead of dry biomass as it is a direct continuation of figure 12.

Done

89 A link to TN about analysis protocol would eb appreciated; you suggest several replications; how many would you recommend?

requied information is added

91 Environmental conditions: do you something more specific in mind?

Information is added

92 and fol. It would be very useful to have 3D graphs to see the discrepancies on both axes of the chamber. Can you please clarify why you do not have fres and dry weights for all trays whereas in the sampling protocls it is mentioned that every single plant is harvested for at least fresh an dry weight determination? You produce a serie of figures however you do not explain why you choose to illustrate your results this way: can you clarify your logic and introduce your figures? To ease the reading of this TN, it would be usefull to raise your conclusions and illustrate them with your figures.Raw data are needed in annex to this TN. This will be very important to compare with future crop tests results.

All comments are taken into account and necessary changes are performed in the document

100 Sampling strategy of the nutrient solution is not given; how do you take your 3 samples, when? Which volume do you collect? Was the nutrient solution renewed during the test?

This information is given in TN 96.4

101 Do we know how much of the nutrient solution has been added? "treatment" is maybe most the best wording: crop growth Phase? Please precise the rationale of analysing the seedlings at 15 days, i.e at the time of transplanting to the chamber. What is the sampling strategy for each "treatment"? PLease refer to the relevant TNs. Maybe it is worth to give all the information provide as annotatoions to table 4 in the main text before the table itself.

Information about quantity of consumed nutrient solution is added into the document; "treatment" is an universal term used in Anglophone scientific journals for designation of version of experiment; all other comments are taken into account and the changes are done

Table 5: obtained--> do you mean uptaken from CO2 and water; it is not clear from the title of table 5 that you have analysed the leaves only. Do you compare the leaves analysis with the analysis o fthe correpsondong whole plants? Please clarify

There is set expression in plant physiology when it comes to those elements (C, H), "obtained from water", etc.; in the title of table 5 it is mentioned that content of those elements was given for lettuce shoots, which is in case of lettuce plants is equal to lettuce leaves

06	The title of pararaph refers to open loop tests whereas closed loop tests are
	included as well

Amended

106 *"Specific objective.."*: this remark should be removed as the tests had been included in TN 96.2. The remark under the table should be rephrased/removed: there is no Sherpa document there is one MPP TN. Please clarify why some tests planned were not implemented (see table)

UoG: There are separate Sherpa documents - these are included in the appendix.

MPP : Agree to remove both sentences (text amended). Sherpa documents can be included in Appendix as proposed by UoG. Some tests were not performed (N in the Implemented column). EC/pH and CO2 tests were more relevant to be done in closed loop in order to evaluate the performance, as open loop tests will be performed with the Schneider Control System (explained in the text).

106 15.2 open loop valves is illustrated by closed loop valves, is it correct?

UoG: The additional testing for Sherpa has been separated from this document and the original documents have been included to improve the clarity of this TN.

MPP:"closed loop valves" was the name of the excel file provided by UoG for the test. Even if the name is not relevant it is really an open loop test. Text supressed in the figures.

107 15.2. Wording to be updated to include purpose of the test, clarifications on why some data are missing...

Data are missing because they were not recorded by the Argus system (explained in the text).

The purpose of the test was to evaluate the behaviour of T and RH with specific sollicitations of hot and cold valves (explained in the text).

108 and fol Many colored lines are missing on the graphs, some are even empty, some units are wrong, some are missing. Please update . Conclusions of the tests are missing.

Lines or data are missing because data were were not provided for these parameters

The main conclusions are provided within the description of each test

116 and fol Duplication with pages138 and fol. Please update the TN to be one document not a succession of various inputs.Legend is missing on axes on many graphs. Graphs seem cut at the end

Duplication has been removed; document has been updated. Graphs amended and legend included.

116 Conditions of the test: I do not understand that we refer to 2 temp set points with such narrow temp range, can you clarify?

In the Argus system, temperature is not controlled by a set point but in a

range(Low/High)

119	please update the EC unit
122	Done Nutrient tank temperature: please clarify which new design you are referring to.
138 and fol	Explained: it refers to the Final design of the HPC Results of the complementary tests: see previous remark
	Duplication has been removed; document has been updated. An overall conclusion of this TN is missing

Overall conclusion included