

An overview of JAXA R&D in Regenerative life support system

Yoko Sakai, Sogo Nakanoya JEM Mission Operations and Integration Center, Japan Aerospace eXploration Agency (JAXA)

Explore to Realize

Outline

- 1. JAXA ECLSS Roadmap
- 2. Development Status of JAXA's ECLSS
- 3. Demonstration Platform in "Kibo" for Agro-space

JAXA ECLSS Roadmap

2. Development Status of JAXA's ECLSS

Water recovery system

Waste management system Flush <u>Collecte</u>d Water Pre-treated Urine Space Toilet Feces Urine/Feces Water (Option) Collection Food/ Wet System trash Bag Waste Solid waste (Dry) Management Solid waste container <u>System</u>

Vaccum toilet

Freeze-dry (freeze&sublimation)

JAXA's Advanced ECLSS with Plant cultivation

Strawberry, tomato, lettuce, potato uG condition or lunar surface

Study Results about bioregenerative ECLSS using Chlamydomonas so far...

Preliminary experiments shows;

- Chlamydomonas may be able to propagate in urine medium. (without pretreatment of nitrification)
- Consumption of CO2 by Chlamydomonas in 500 mL incubator was confirmed at 3000 ppm CO2.
- Selecting specific light spectrum and using pulse light will optimize power efficiency.
- Chlamydomonas contains some carbohydrate and protein.

Summary

We have been developing physio-chemical ECLSS and trying to develop bioregenerative ECLSS for future ECLSS with combination of them.

The challenge before us is ... Power Mass Controllability Stability

3. Demonstration Platform in "Kibo" for Agro-space

Cell Biology Experiment Facility - Left (CBEF-L)

CBEF-L Operation Configurations

	Configuration 1	Configuration 2	Configuration 3
Incubator Configuration	CBEF-L CBEF Micro-G Tray Micro-G Tray Centri- fuge Centri- fuge	CBEF-L CBEF Centri- fuge Micro-G Tray Centri- fuge Centri- fuge	CBEF-L CBEF Micro-G Tray Large Centrifuge Centri- fuge
Experiment Opportunity	CBEF and CBEF-L have the same number of samples on micro-G trays and regular centrifuges. It doubles the sample number.	3 different artificial-G environments (0.1 - 2G) and 1 micro-G environment.	Artificial-G environment on the large centrifuge in CBEF-L, and micro-G environment on both the micro-G tray and the regular centrifuge without rotation in CBEF.

CBEF-L Operation Configurations

CBEF-L Concept 1. Increasing Sample Number

CBEF-L can accommodate the same number of sample canisters or mouse cages as the current CBEF having the same micro-g and artificial-g sections. Moreover, micro-g section of CBEF-L can be replaced with the second artificialg section. The advantage of having two artificial-g sections is that it can create 4 different gravity levels (including micro-g) at the same time.

CBEF-L Concept 2. Mitigation of Gravity Gradient

In case of mice, the current centrifuge with R175 mm occurs 24% difference in gravity gradient between bottom (feet) and top (head) of a mouse. By increasing the size of centrifuge to R380 mm, the difference reduces to 10%.

- Current Centrifuge (Φ350mm/R175mm): 1G@bottom, 0.76G@top (Δ-24%)
- Large Centrifuge (Φ760mm/R380mm): 1G@bottom, 0.90G@top (Δ-10%)

CBEF-L Concept 3. Increasing Installation Area

For example, habitat cage for a rat requires more than 387cm² of floor dimension. The enlarged centrifuge can house 6 habitat cages with floor dimension of approximately 400cm².

■ Current Centrifuge (Φ350mm/R175mm): floor dimension ~102cm²

Large Centrifuge (Φ 760mm/R380mm): floor dimension ~400cm²

Multi-purpose Small Payload Rack (MSPR)

Resorce	MSPR	MSPR2
Gas	NZ	N2, Ar, CO2
Water and cooling water	MTL (16~23°C)	
Other	Video	

Freezer-Refrigerator Of STirling cycle (FROST)

FROST

-35°C or +3°C

FROST2

-100 °C to +60°C

Summary

- CBEF-L can be used to test under the gravity condition of the moon and Mars.
- MSPR can be used to test using gases, water and video.
- FROST can be used to create the environment of constant temperature.