

Regenerative Life Support Status & Challenges

Christophe Lasseur MELiSSA-Agrospace Workshop, May 16/18th 2018, Rome

ESA UNCLASSIFIED - For Official Use

European Space Agency

The Challenge

How to select and assemble processes and technologies to reach the highest level of closure and respect safety standards?

© 2016, IPStar BV - CONFIDENTIAL

ALiSSE/ESM Criteria

- Metric to evaluate and compare ECLSS:
 - Mono & Multi-parameters Analysis:
 - Mass,
 - Efficiency,
 - Energy,
 - Safety,
 - Crew time.

Mass

Food & Waste Diversity

- Main part of the waste are from human metabolism and of High Diversity,
- Food supply means high diversity,
- Only Biological processes can tackle the diversity of the waste transformation and food production, It is the direction but it is far to be a product !
- Biological process means:
 - Very Complex molecule,
 - Complex metabolism understanding and prediction
 - Very high and very slow dynamics,
 - Potential nature changes,
 - •

Preparing the Future via past Experience ?

From 1733 to 2017...

Joseph Priestley (1733-1804)

A "Patron Saint" of Bioregenerative Systems !

Various Portraits of Joseph Priestley (courtesy Ray Wheeler)

Some Names of Closed Loop ...

Korolev

Regenerative Life Support around the World (Wheeler 2009)

Recent Flight Achievements

Fact Sheet – ModuLES PBR – A Closed Loop Community Bioreactor

Sub-Modules:

- modular, stackable PBR, 50 ml volume each, new design
- · illumination unit new design
- Electrode Unit
- MRU Media Recycling Unit
- CSGE Cell Separation and Gas Exchange Unit
- FCU Flow Cytometer Unit
- DCMU Data Collection and Management Unit

Electronics MILL I //D8/2019 19:53 FCU

Results:

- 4 week long test runs succesfully completed (turbidostatic)
- · micoralgae growth in a stabile community of bacteria and fungi
- media recycling successfull / biomass separated successfully transferred to consumer module
- · lower and upper limits of nutrient concentrations determined
- gas exchange (removal of O₂, still insufficient)
- Electrode Unit revised all optodes exchange to electrochemical electrodes
- etc.

This work is funded by the German Bundesministerium für Wirtschaft durch das DLR Raumfahrtmanagement, FKZ 50 WP 1711

Melissa workshop, Rome, 2018

VEGGIE/APH

Ground Demonstrators

Concordia Station

EDEN ISS

Ground Demonstration of Plant Cultivation Technologies for Safe Food Production in Space

- COMPET 7 2014: Space exploration Life support
- EU Contribution ~4.5 M€ (total over 5.5 M€)
- 14 Partners from Industry, Academia and research Institutes
- Germany, Ireland, Italy, Netherlands, Sweden, Austria, Canada, and USA

HORIZ N 2020

• 12-month analogue mission to Antarctica

MELiSSA Pilot Plant

Oxygène/CO₂

High Control Strategy

BIOS Krasnoyarsk

- The Facility
 - Devoted mainly to Life Support issues (still the best on the world)
 - 300 m3 total volume, up to 3 persons for 6 months

Chinese Space Laboratory Ground Experiment Center

- Area: 30000 m²
- Project investment: ¥351 million CNY (≈\$55 million)
- Support international cooperation research of life science and biotechnology, material science, fundamental physics, fluid physics and combustion, astronomy etc.
- The first phase will support the international cooperation projects of Bioregenerative Life Support System

Closed Bio-Ecological Circulation System

Societal Impact

Some PhDs

MULTI-TROP

MULTIple-TROPisms: interactions for root orientation in microgravity

University Team*:

Giovanna Aronne (Project Leader and Principal Investigator) Veronica De Micco and Stefania De Pascale (Scientific Team) Luigi Gennaro Izzo, Leone Ermes Romano, Sara De Francesco (Students)

*Dept. Agricultural Sciences, University of Naples Federico II

School Team**:

Pina Russo and Giovanni Ciaravolo (School Team Leader) Chiara Buonanno, Claudia Cosenza, Roberta Cosenza, Daniela D'acunzo, Mario Ferre, Ilaria Giordano, Giada Giuliano, Francesco Saverio Marrano, Simone Punzo (School students)

**Liceo Scientifico Statale L. Silvestri, Portici (NA)

Overall Status

Known Status....

FUNCTION	Status	Ground	Flight
CO2 to O2	Partially at Payload level	Photobioreactor, ACLS, MODULES, PBR@LSR	ARTEMISS,
Condensate	~100%	/	ISS, MIR,
Urine	Water recovery only, preliminary Payload	Nitrification (Pilot)	VCD
Waste	Partially	Bench Hardware	/
Food	Some Payloads	Engineering Model	VEGGIE, SVET, LADA
Complete Loop Closure	Partially	MPP, EDEN ISS, Concordia, BIOS, CEEF, Lunar Palace,	/
System Prediction	Control	MPP	ARTEMISS (e.g Oxygen)

Why Not More ?

CIS LUNAR ORBITER

2) Are we not resisting ?

Robustness

- We will not escape the Safety Boards,
- In other words we need to demonstrate the engineering performances of our biological processes,
 - Prediction,
 - Performances,
 - Robustness,
 - Energy,..
- Any resistance is a lost of time, and by the way, of Innovation, Creativity and competitiveness,

3) Radiations ?

Radiations Effects

- Plants and bacteria are radiation sensitive but CREW too...
- Can we predict radiation breakage effects and model reconstruction phenomena ?
- How critical will it be ? (Spirulina known to resist very well to radiation !)

4) Terrestrial Synergy

Earth of the Future

• For the last ~5 years, there is a huge booming in circular system :

- Circular economy
- Smart cities
- Vertical farming,
- Organic Food.
- Although we are active in the field for more than 50 years, Why are we not leading and some times even not involved ?

5) Are we organized ?

Diverse Community

- •Why today there is no International Exchange platform and/or collaborations for Regenerative life Support:
 - •IALSWG 2000-2012,
 - •COSPAR, almost no engineering,
 - ICES, no really international, and almost no scientists,
 - Even within Europe there are duplications,

I have some Dreams...

My Dream List

- Clear, Harmonized and Robust European Strategy,
- High quality of the Scientific and Engineering approach ,
- Multidisciplinary exchanges, (e.g human physiology),
- Easier and Faster Access to Space,
- Easier and Stable financial source,
- Economical : Terrestrial spin-in/Spin-out
- Societal:
 - Education,
 - Citizen participation, and support,
- I have more.....!!!

Modelling and Simulation

- From one organism/plant modelling to a functional community modelling,
- From CHNOSP elements to the complete Mendeleev table,
- From Mass balance/Monod to Thermodynamical models (i.e R. Clausius),
- Modelling of genetic/transcriptomic evolution,

Microbiology

- On-line and real time microbial identification and quantification,
- Genetic Stability,
- Food Engineering.

• Why :

- Understanding AND Modelling of semi-complex community,
- Better Robustness, and probably better efficiency,

Plant Physiology

- Characterisation and quantification of flux within the plant body (roots, stem, leaves,..)
- Morphological Development models,
- Intensive plants characterisation,
- Halophilic resistance,
- Understanding of reduced gravity,
- Radiation effect,

Human Physiology

- Waste/Urine Quality Prediction,
- Food perception and acceptance
- Microgravity effects,
- Radiation Countermeasures (?),
- Psychological effects

Conclusion

- For the first we had Biological Life Support payloads on board ISS,
- The Participation of this Workshop confirms the high motivation,
- Short term will not be easy....
- On Friday afternoon, recognized experts will share their comments and recommendations with us.

GRAZIE

