

TECHNICAL NOTE 85.93

Prototype Acceptance Test Plan (in MPP)

Prepared by/Préparé par	
Reference/Réference	19772/06/NL/GM
Issue/Edition	1
Revision/Révision	0
Date of issue/Date d'édition	May 2008
Status/Statut	

APPROVAL

Title	Prototype Test Plan and Procedures Document	Issue	1	Revision	0
Titre		Edition		Révision	

Author	Date	27/05/08
Auteur	Date	

Approved by	Dr. Michael Dixon	Date	27/05/08
Approuvé par		Date	

CHANGE LOG

Issue/Edition	Revision/Révision	Status/Statut	Date/Date

Distribution List

Name/Nom	Nom Company/Société Quantity/Quantité	

TABLE OF CONTENTS

1.	Introduction	6
	1.1. Purpose and Structure of Test Plan	6
	1.2. General Procedures for Test Results Data Acquisition	
	1.3. General Control System Test Procedures	8
	1.4. Conditions of Acceptance Functional, Control and Operational Tests Program for HPC1	8
2.	Functional, Control and Operational Tests Program for HPC1	.10
3.	Exterior Air Lock Door Functional Testing	.18
	1.1. Procedure ID: MPP-HPC1-EXTERIOR_AIRLOCK_DOOR - FT	.18
	1.2. Introduction	.18
	1.3. Acronyms used in this test plan procedure	.18
	1.4. Applicable documents	.18
	1.5. Video Log File Names: (from TN 85.83)	.18
	1.6. Acceptance/rejection criteria	.18
	1.6.1. General	.18
	1.6.2. Acceptance criteria	.18
	1.6.3. Rejection criteria	.19
	1.7. Environmental requirements	.19
	1.8. Safety aspects	
	1.9. Test set-up	
	1.10. Test Procedure	.20
	1.11. Conclusions	.22
	1.12. Deviations	.22
2.	Interior Air Lock Door Functional Testing	.23
	1.1. Procedure ID: MPP-HPC1-INTERIOR_AIRLOCK_DOOR - FT	.23
	1.2. Introduction	.23
	1.3. Acronyms used in this test plan procedure	.23
	1.4. Applicable documents	.23
	1.5. Video Log File Names: (from TN 85.83)	.23
	1.6. Acceptance/rejection criteria	.23
	1.6.1. General	
	1.6.2. Acceptance criteria	.23
	1.6.3. Rejection criteria	
	1.7. Environmental requirements	
	1.8. Safety aspects	.24
	1.9. Test set-up	
	1.10. Test Procedure	
	1.11. Conclusions	
	1.12. Deviations	.26
2.	Air Lock Purge System Functional Testing 1.1. Procedure ID: MPP-HPC1-AIRLOCK_PURGE - FT	.27
	1.1. Procedure ID: MPP-HPC1-AIRLOCK_PURGE - FT	.27
	1.2. Introduction	.27
	1.3. Acronyms used in this test plan procedure	.27
	1.4. Applicable documents	
	1.5. Video/Data Log File Names:	
	1.6. Parts Tested (P&ID Reference):	.27
	1.7. Acceptance/rejection criteria	.27

	General	
	Acceptance criteria	
	Rejection criteria	28
	1.8. Environmental requirements	28
	1.9. Safety aspects	28
	1.10. Test set-up	29
	1.11. Test Procedure	
	1.12. Conclusions	
	1.13. Deviations	
2	Lighting Sub-System Functional Testing	35
۷.	Lighting Sub-System Functional Testing 1.1. Procedure ID: MPP-HPC1-LIGHTING-FT	
	1.2. Introduction	
	1.2. Introduction	
	1.3. Acronyms used in this test plan procedure	
	1.4. Applicable documents	35
	1.5. Data Log File Name:	
	1.6. Parts Tested (P&ID Reference):	
	1.7. Acceptance/rejection criteria	
	1.7.1. General	36
	1.7.2. Acceptance criteria	36
	1.7.3. Rejection criteria	
	1.8. Environmental requirements	
	1.9. Safety aspects	
	1.10. Test set-up	37
	1.11. Test Procedure	
	1.12. Conclusions	
	1.13. Deviations	
~		
Ζ.	Air Circulation Fan Functional Testing	
	1.1. Procedure ID: MPP-HPC1 – Blower_Assembly – FT	
	1.2. Introduction	
	1.3. Acronyms used in the test	42
	1.4. Applicable documents	
	1.5. Data Log File Name:	
	1.6. Parts Tested (P&ID Reference):	42
	1.7. Acceptance/rejection criteria	43
	1.7.1. General	43
	1.7.2. Acceptance criteria	43
	1.8. Environmental requirements	
	1.9. Safety aspects	43
	1.10. Test set-up	
	1.11. Test Procedure	
	1.12. Conclusions	
	1.13. Deviations	
\mathbf{r}	Gas Analysis System Functional Testing	40
Ζ.	1.1. Procedure ID: MPP-HPC1-GAS_ANALYSIS – FT	40
	1.2. Introduction	
	1.3. Acronyms used in this test plan procedure	
	1.4. Applicable documents	46
	1.5. Video/Data Log File Names:	
	1.6. Parts Tested (P&ID Reference):	
	1.7. Acceptance/rejection criteria	
	1.7.1. General	
	1.7.2. Acceptance criteria	47
	1.7.3. Rejection criteria	
ти	is document is confidential property of the MELiSSA partners and shall not be used, duplicated,	

modified or transmitted without their authorization Memorandum of Understanding 19071/05/NL/CP

1.8. Environmental requirements	
1.9. Safety aspects	
1.10. Test set-up	
1.11. Test Procedure	
1.12. Conclusions	
1.13. Deviations	51
2. Chamber Shell Integrity Leakage Test 1.1. MPP-HPC1-LEAKAGE-FT	
1.1. MPP-HPC1-LEAKAGE-FT	
1.2. Introduction	
1.3. Acronyms used in this test plan procedure	
1.4. Applicable documents	
1.5. Data Log File Name:	
1.6. Parts Tested (P&ID Reference)	
1.7. Acceptance/rejection criteria	
1.7.1. General	
1.7.2. Acceptance Criteria	
1.7.3. Rejection Criteria	
1.8. Environmental requirements	
1.9. Safety aspects	
1.10. Test set-up	
1.11. Test Procedure	54
1.12. Conclusions	
1.13. Deviations	
2 FC System Functional Testing	57
2. EC System Functional Testing 1.1. Procedure ID: MPP-HPC1-EC – FT	57
1.2. Introduction	57
1.3. Acronyms used in this test plan procedure	57
1.4. Applicable documents	57
1.5. Video/Data Log File Names:	57
1.6. Parts Tested (P&ID Reference):	57
1.7. Acceptance/rejection criteria	57
1.7.1. General	
1.7.2. Acceptance criteria	
1.7.3. Rejection criteria	
1.8. Environmental requirements	
1.9. Safety aspects	
1.10. Test set-up 1.11. Test Procedure	
1.12. Conclusions	
1.13. Deviations.	
2. pH System Functional Testing 1.1. Procedure ID: MPP-HPC1-pH – FT	
1. 1. Procedure ID: MPP-HPC I-pH – FT	
1.2. Introduction	
1.3. Acronyms used in this test plan procedure	
1.4. Applicable documents	
1.5. Video/Data Log File Names:	
1.6. Parts Tested (P&ID Reference):	
1.7. Acceptance/rejection criteria	
•	
1.8. Environmental requirements	
1.9. Safety aspects	
This document is confidential property of the MELiSSA pa modified or transmitted without their authorization	artners and shall not be used, duplicated,

Memorandum of Understanding 19071/05/NL/CP

	4.40 Test estim	~ 4
	1.10. Test set-up	64
	1.11. Test Procedure	
	1.12. Conclusions	
~	1.13. Deviations	68
2.	Irrigation Sub-System Functional Testing 1.1. Procedure ID: MPP-HPC1-IRRIGATION-FT	69
	1.1. Procedure ID: MPP-HPC1-IRRIGATION-FT	69
	1.2. Introduction	
	1.3. Acronyms used in this test plan procedure	69
	1.4. Applicable documents	
	1.5. Data Log File Name:	69
	1.6. Parts Tested (P&ID Reference):	69
	1.7. Acceptance/rejection criteria	
	1.7.1. General	70
	1.7.2. Acceptance criteria	70
	1.7.3. Rejection criteria	70
	1.8. Environmental requirements	70
	1.9. Safety aspects	70
	1.10. Test set-up	
	1.11. Test Procedure	
	1.12. Conclusions	
	1.13. Deviations	
2.	Thermal Control Sub-System Functional Testing	73
	1.1. Procedure ID: MPP-HPC1-TEMPERATURE/HUMIDITY-FT	
	1.2. Introduction	73
	1.3. Acronyms used in this test plan procedure	
	1.4. Applicable documents	
	1.5. Data Log File Name:	73
	1.6. Parts Tested (P&ID Reference):	73
	1.7. Acceptance/rejection criteria	.73
	1.7.1. General	
	1.7.2. Acceptance criteria	
	1.7.3. Rejection criteria	74
	1.8. Environmental requirements	74
	1.9. Safety aspects	74
	1.10. Test set-up	74
	1.11. Test Procedure	
	1.12. Conclusions	
	1.13. Deviations	
1.	Crop Testing	77
	5.1. Consumables required for Operational Testing with Crops	77
	1.1. Solution Preparation	.77
	1.2. Germination, Emergence, Thinning, Planting	78
	1.3. Crop growth1.4. Analysis of Net Carbon Exchange Rate and Assessment of Model Performance	.78
	1.4. Analysis of Net Carbon Exchange Rate and Assessment of Model Performance	.79
	1.5. Harvest	.79
2.	Procedures for Temperature and Light Intensity Mapping in the Chamber Growing Volume	.79
	2.1.1. Spatial Characterization in Light Intensity	79
	2.1.2. Spatial Characterization in Temperature	80
3.	Procedures for Calibration of the VFD and Blower Speed	.80

1. Introduction

1.1. Purpose and Structure of Test Plan

The information contained in this technical note is presented to ensure that the HPC1 prototype designed and constructed by the University of Guelph and Angstrom Engineering adheres to the specifications of ESA, as defined in Annex to Appendix 1 of RFQ 3-11515. An additional outcome of the test plan is demonstration that the chamber prototype has sufficient flexibility in design to meet the evolving needs of the MPP research facility in Spain.

This test plan consists of three main phases. First, a series of Functional Tests is envisioned to demonstrate the functionality of all chamber parts before integration of a controller. For these tests, data log capability (on the part of the controller) is required, as outlined in the general procedures for test results data acquisition, below. Formal control tests are aimed to demonstrate chamber adherence to the environment control requirements listed in Annex to Appendix 1 of RFQ 3-11515. Controller tests are performed using system demand profiles. The final operational test with a batch culture of lettuce is conducted under static conditions.

1.2. General Procedures for Test Results Data Acquisition

Functional tests outlined in Section 2 below generally rely on video log, visual inspection or confirmation of signal transfer to/from the controller. Operational tests generally rely on data log by the controller over the period of the test. Electronic data or video log file names are defined in the relevant test procedure sections and summarized in the table below.

In general video logs will include English audio commentary and data logs are provided in coma or tab delimited test files easily importable into EXCEL for data analysis and plotting.

Test	Data/Video/List file Name
1.Chamber	Check list of in column of TN 85.7 EXCEL Sheet (i.e. HPC prototype Data
Completeness	Package)
2. Check of	Visual Inspection with Photos
Outward	MPP_HPC1_Outward_Appearance.jpeg (digital photo album provided on
Appearance	CD-ROM)
3. Check of	Written Measurement
Dimensions	MPP_HPC1_Log_Book (writing in hardcover log-book)
4. Exterior Airlock	Video Log
Doors	MPP_HPC1_Exterior_Door_A_Operation_and_Tray_Mounting.mpeg
	MPP_HPC1_Exterior_Door_C_Operation_and_Tray_Mounting.mpeg
5. Interior Airlock	MPP-HPC1 – Interior_Airlock_Door – FT
Doors	MPP_HPC1_Interior_Door_A_and_C_Operation_and_Tray_Mounting.mp
	eg
Airlock Purge	Written Measurement
	MPP_HPC1_Log_Book (writing in hardcover log-book)
7. Lighting	Written Measurement
	MPP_HPC1_Log_Book (writing in hardcover log-book)
	Data File

	MPP_HPCLIGHTING_FT.txt
	 Includes confirmation of signal reading at controller
8. Main	Written Measurement
Centrifugal Blower	MPP_HPC1_Log_Book (writing in hardcover log-book)
and VFD Motor	Data File
	MPP_HPC1AIR_CIRCULATION_FT.txt
9. Gas Analysis	Written Measurement
	MPP_HPC1_Log_Book (writing in hardcover log-book)
	Data File
	MPP_HPC1_GAS ANALYSIS_FT.txt
10. Integrity	Data File
leakage Test	MPP_HPC1LEAKAGE_FT.txt
11. EC System	Written Measurement
	MPP_HPC1_Log_Book (writing in hardcover log-book)
	Data File
	MPP_HPC1_EC_FT.txt
12. pH	Written Measurement
	MPP_HPC1_Log_Book (writing in hardcover log-book)
	Data File
	MPP_HPC1_pH_FT.txt
13. Hydroponics	The necessity of this system is not yet confirmed and therefore its design
Cooling	has not been finalized. Empirical assessment of the solution temperature
	during crop culture will be performed. In some cases, the solution
	temperature does not rise above ambient if the reservoir remains outside.
	CESRF needs to verify this during the operational tests of the irrigation
	system
14. Irrigation	Written Measurement
System	MPP_HPC1_Log_Book (writing in hardcover log-book)
	Data File
	MPP_HPC1_IRRIGATION_FT.txt
15. Temperature	Written Measurement
and Humidity	MPP_HPC1_Log_Book (writing in hardcover log-book)
	Data File
	MPP_HPC1_TEMP_HUMID_FT.txt
16. Control Loop	Written Measurement
Tests	MPP_HPC1_Log_Book (writing in hardcover log-book)
47 Lattuce Datab	MPP_HPC1_PROFILE_OT.txt
17. Lettuce Batch	Written Measurement
Culture	MPP_HPC1_Log_Book (writing in hardcover log-book)
	MPP_HPC1_LETTUCE_BATCH_OT.txt

1.3. General Control System Test Procedures

The purpose of the control system tests outlined in Section 2 below is to demonstrate chamber performance and adherence to the environmental control specifications of ESA. As part of their sub-contract, Argus calibrates or "tweaks" control, particularly in the case of thermal and humidity control, standard procedures defined in-house. Procedures for controller calibration are therefore not provided, and the Argus system is considered a "black-box" controller with specific training on the control hardware and proprietary software provided by Argus, if requested and budgeted, at the time of install at the MPP.

1.4. Conditions of Acceptance

In the case of functional tests, the requirements for acceptance of hardware are defined in the acceptance criteria of the individual test procedure, unless otherwise defined below. Acceptance of control tests is based on the technical specifications for environmental control as defined by ESA. The relevant section from the contract RFQ is re-produced below. The control test plan (sometimes referred to as the profile tests) are designed to demonstrate the functioning of the various control loops in maintaining the environmental/biological requirements defined in the table below.

Also, during the functional, operational (profile) and crop tests, the chamber shall be demonstrated to adhere to all sections of Annex to Appendix 1 of RFQ 3-11515. The requirements defined in the Annex to Appendix 1 of the RFQ are qualitative and no numerical bounds were defined.

ltem	Requirement
Illumination daylight levels	$0 - 800 \ \mu\text{E}$ PAR selectable in four discrete levels
Illumination night levels	0 – 10 μΕ PAR
Day/night cycle	Any combination of 1 day and 1 night period within a 24 hour span
Air Temperature	Selectable within 15 – 30 °C
Temperature	Demand +/- 0.5 °C
Accuracy	
Internal Air	Not less than 1 crop volume per minute
(refreshment)	
circulation rate	
Air Velocity	From 0.1-0.8 m/s
Water Supply in the	200 mL / min
Roots	
Nutrient Supply	Hydroponics (NFT) cultivation with EC demands of 0 – 3 mS/cm
	pH: 5.5 +/- 0.5
	EC: 1.9 dS/cm +/- 0.05dS/cm
	Dissolved O ₂ : 80 – 100% of saturation
Pressure	Ambient
Atmospheric	Humidity: 50 – 85% (no accuracy specified)
Composition	O ₂ - 20% +/- 1% (although not controlled)
	CO ₂ - 300 – 2000 ppm (no accuracy for control specified)
	N ₂ - Balance to 100%

2. Functional, Control and Operational Tests Program for HPC1

Test	Procedure /Procedure number	Date	Duration (days)
Functional Tests			
1.Chamber Completeness		0.25	
2. Check of Outward Appearance	 Visual Inspection The visual inspection consists of verification of the outer equipment envelope. In detail the equipment shall be inspected with respect to the following aspects Outer surface – cleanliness, damages, corrosion, coating, sharp edges Mechanical assembly – tightness of fittings, material compliance Electrical assembly (connectors, interconnecting cables marked, etc.) Availability of protective caps 		0.25
3. Check of Dimensions		0.25	
4. Exterior Airlock Doors	 Clearance around chamber MPP-HPC1-Exterior_Airlock_Door- FT Demonstration of procedures/test for opening/closing the exterior air lock doors and tray mounting/dismount. Elasticity of the exterior door sealing gaskets is also demonstrated. Functional demonstration of the door open/closed switch/LED indicator circuit (See part list below) Parts Tested (P&ID Reference): ZS_4100_01, ZS_4100_02, ZI_4100_01 ZS_4101_01, ZS_4101_02, ZI_4101_01 		0.25
5. Interior Airlock Doors	 MPP-HPC1 – Interior_Airlock_Door – FT Demonstration of procedures/test for opening/closing the interior air lock door and tray movement in harvest and planting 		0.25

	using glove access	
6. Airlock Purge	MPP-HPC1 – Airlock_Purge – FT Sequence: 1. Testing of air lock injection and vent solenoids 2. Testing of air lock pressure sensors and switches 3. Testing of passive pressure relief valves Parts Tested (P&ID Reference): 1. RV_4100_01, SV_4102_01, SV_4102_02, PT_4102_01, PS_4102_01, HV_4102_01 2. RV_4101_01, SV_4103_01, SV_4103_02, PT_4103_01, PS_4103_01, HV_4103_01	0.25
7. Lighting	 MPP-HPC1 - Lighting - FT Sequence: Testing of the lamp loft cooling fans Testing of the lamp loft temperature sensors Testing of the lamp loft air flow indicator Testing of the lamp string relays and high-powered contactors to activate luminaries Parts Tested (P&ID Reference): TT_4105_01, TT_4105_02, TT_4105_03 (lamp loft temperature transducers) FAN_4105_01, FAN_4105_02, FAN_4105_03 (lamp loft cooling fans) FSL_4105_01, FSL_4105_02, FSL_4105_03 (lamp loft air flow sensors) RT_4104_01, RT_4104_02, RT_4104_03 (PAR sensors) IY_4104_01, IY_4104_02, IY_4104_03 (lamp string relays and contactors) LHPS_4104_01 through _06 (HPS Lamps) LMH_4104_01 through _03 (MH Lamps) 	0.25
8. Main Centrifugal Blow		0.25

VFD Motor	 Sequence: 1. Visual inspection of the pulley assembly, support and rotary feed-through shaft 2. Demonstration of air flow through ducting 3. Testing and calibration of the air circulation VFD motor 4. Testing of the air circulation fan 5. Testing of the air velocity sensor Parts Tested (P&ID Reference): BLWR_4111_01 (Air Circulation Fan) MVFD_4111_01 (Air Circulation Motor) FT_4111_01 (Air Velocity Sensor) 	
9. Gas Analysis	MPP-HPC1 – Gas_Analysis – FT Sequence: 1. Demonstration of IRGA functioning 2. Demonstration of O2 analyzer functioning 3. Demonstration of the factory calibrated mass flow controller (with set-point) 4. Demonstration of manual over-ride of CO2 injection line 5. Test of CO2 injection line solenoid Parts Tested (P&ID Reference): 1. AT_4113_01 (CO2 Analyzer/IRGA) 2. AT_4113_01 (Mass Flow Controller for CO2) 4. SV_4113_01 (CO2 injection line Solenoid) 5. HV 4113 01 (Manual CO2 injection over-ride valve)	0.25
10. Integrity leakage Test	MPP-HPC1 – Leakage – FT 1. Performance of passive CO2 decay test with running air circulation fan to determine operational leakage rate	2
11. EC System	MPP-HPC1 -EC - FT Sequence: 1. Integrity of Stock A and B tanks 2. Stock tank A and B injection solenoids 3. Stock tank A and B low level switches 4. Stock A and B manual valves 5. Calibration of stock delivery system 6. Testing of EC sensor	0.25

	Parts Tested (P&ID Reference):	
	1. VSSL_4108_01, VSSL_4108_02 (Stock Tanks A and B)	
	2. SV_4108_01, SV_4108_02 (Stock A and B injection valves)	
	3. LSL_4108_01, LSL_4108_02 (Stock A and B tank low level switches)	
	4. HV_4108_01, HV_4108_01 (Stock A and B Injection Manual Override Valves	
	5. AT_4108_01 (EC Sensor)	
12. pH	MPP-HPC1 – pH – FT Sequence:	0.25
	 Integrity of Acid and Base tanks Testing of Acid and Base Tank injection solenoids 	
	3. Testing of Acid and Base Tank low level switches	
	 Demonstration of Acid and Base Tank manual valves Calibration of Acid and Base delivery system 	
	6. Testing of pH sensor	
	Parts Tested (P&ID Reference):	
	 VSSL_4107_01, VSSL_4107_02 (Acid and Base Tanks) SV_4107_01, SV_4107_02 (Acid and Base injection 	
	valves)	
	 LSL_4107_01, LSL_4107_02 (Acid and Base tank low level switches) 	
	4. HV_4107_01, HV_4107_01 (Acid and Base Injection	
	Manual Override Valves)	
	5. AT_4107_01 (pH Sensor)	
13. Hydroponics Cooling	The necessity of this system is not yet confirmed and therefore its design has not been finalized. Empirical assessment of the solution	
	temperature during crop culture will be performed. In our early	
	tests of solution temperature, the solution remained at ambient	
	conditions since the 120L reservoir remains outside and has	
	significant thermal capacitance. We have therefore not yet made	
	provisions for solution temperature control given the limited availability of cooling water in the MPP.	

14. Irrigation System	 MPP-HPC1 – Irrigation – FT Sequence: Integrity of nutrient reservoir and plumbing (leakage) Demonstration of main irrigation pump Calibration of main irrigation pump delivery Testing of irrigation flow sensor Demonstration of manual valves positioned on the by-pass and main irrigation lines Demonstration of irrigation flow balancing along the internal distribution manifold Testing of nutrient tank Hi/Low switches Parts Tested (P&ID Reference): GP_4106_01 (Main Irrigation Pump) FT_4106_01 (Manual shutoff to chamber Irrigation manifold in chamber HV_4106_02 (Irrigation Pump Inlet Manual Override) HV_4106_03 (Irrigation Drain Manual Override) HV_4106_04 and HV_4106_05 (Irrigation By-pass Isolation Valves) HV_4106_05, HV_4106_06, HV_4106_7, HV_4106_8 (Manifold Balancing Ball Valves) VSSL 4106 (Nutrient Reservoir) 	0.25	
15. Temperature, Humidity and condensate collection	 MPP-HPC1 – Temp_Humidity – FT Sequence: Testing of growing volume temperature sensors Testing of growing volume humidity/temperature sensors Integrity and functionality of hot water coil Integrity and functionality of chilled water coil/condensate pan Functionality of chilled and hot water valve Functionality of temperature sensors of water service lines and coil surface temperature Integrity of condensate tank and fittings Testing of passive condensate drain from coil drip tray Testing of condensate tank high and low level switches Testing of condensate metering pump 	0.25	

Control/Profile Tests	 Parts Tested (P&ID Reference): TT 4112_04012 (Growing volume temperature sensors) AT 4112_01 - 03 and TT 4112_0103 (growing volume humidity and temperature sensors) S3CV_4112_01 and S3CV_4112_02 (water service line control valves) TT_4112_1318 (water service line entry and exit temperature sensors, coil surface temperature sensors) VSSL_4110_01 (Condensate Tank) LSL_4110_01, LSH_4110_02 (Condensate tank hi and low level switches) GP_4110_01 (Condensate pump and relay) 	
Exterior Air Lock Door Control Loop 4100 and 4101	 MPP-HPC1-Exterior_Airlock_Door - CT Confirmation of controller reading of ZS_4100_01, ZS_4100_02, ZS_4101_01 and ZS_4101_02 Induction of door open alarm tests at the controller in conjunction with purge sequence override in event of door 	3 days
Airlock Purge Control Loop 4102 and 4103	open alarm	

EC Control loop 4108	 MPP-HPC1 -EC - CT Confirmation of EC sensor log AT_4108_01 at the controller Confirmation of controller read of stock A and stock B tank low level sensors (LSL_4108_01 and LSL_4108_02) Confirmation of controller activation of stock injection solenoids 	
	 by the controller (SV_4108_01 and SV_4108_02) 4. Calibration of solenoid opening time for EC control 5. Profile tests of EC control in maintenance of modified Hoagland's solution (EC Demand +/- 0.05 dS/m) 6. Induction of hi/low EC alarms 	
Condensate Collection	MPP-HPC1 – Condensate – CT	
Control Loop 4110	1. Activation of condensate drain procedure by the controller	
Air Circulation Control	MPP-HPC1 – Air Circulation – CT	
Control Loop 4111	1. Activation of the main centrifugal blower by the controller	
	(static VFD setting)	
Growing Volume Temperature and	MPP-HPC1 –Temperature – CT	
Humidity Control	1. Diurnal profile tests in temperature control (demand vs. actual)	
Control Loop 4112	2. Induction and test of hi/low temperature alarm states	
	3. Diurnal profile tests in humidity control (demand vs. actual)	
	4. Induction and test of hi/low humidity alarm states	
	5. Tests of condensate collection tank hi/low alarms, activation of	
	condensate pump	
CO2 compensation control	MPP-HPC1 –CO2 – CT	
Control Loop 4113	1. Profile tests of CO2 control by the controller	
	2. Induction of CO2 alarm states	
Crop Test	MPP-HPC1 – Crop– OT	
	1. 20 day crop trial with lettuce in batch under nominal culture conditions	
	2. Collection of NCER data and comparison to lettuce gas	
	exchange model predictions	
	3. Collection of nutrient uptake data (off-line HPLC)	
	4. Collection of evapo-transpiration data from condensate	
	drainage profiles	
	5. Yield data at harvest	
	6. Nutritional composition of harvested tissue (mineral, proximate)	

3. Exterior Air Lock Door Functional Testing

1.1. Procedure ID: MPP-HPC1-EXTERIOR_AIRLOCK_DOOR - FT

1.2. Introduction

The aim of this test is to demonstrate the operation of the exterior air-lock doors and confirm activation of the door open LED indicator when the door is open and when an object of 2 mm thickness is used to obstruct the door from closing. The test is also used to inspect the gasket seal of the exterior air lock door for deformation.

Comment [Dr. Geoff1]: Onl y one door is fully equipped

1.3. Acronyms used in this test plan procedure

LED – Light Emitting Diode

1.4. Applicable documents

Technical Annex to SOW ref: TEC-MCT/2005/3466/In/CP TN 85.71 including P&ID

1.5. Video Log File Names: (from TN 85.83)

MPP_HPC1_Exterior_Door_A_Operation_and_Tray_Mounting.mpeg MPP_HPC1_Exterior_Door_C_Operation_and_Tray_Mounting.mpeg

1.6. Acceptance/rejection criteria

1.6.1. General

The test is considered successful when the conditions in Section 3.6.2 are met

1.6.2. Acceptance criteria

1. The two exterior air lock doors may be opened and securely closed by an operator without excessive force

- 2. The two door ajar contact sensors (upper and lower) positioned on each of the two air locks are each, independently activated, when an object of 2 mm thickness is used to obstruct the door from closing
- 3. No permanent deformation of the exterior air lock door gasket is observed when a 2mm thickness object obstructs door closure
- 4. The procedures for operation of the exterior air lock door, mounting of trays, positioning of the contact sensors and alarms, and their functionality are clearly documented in video log.

1.6.3. Rejection criteria

The test shall be repeated if the data looks doubtful or failed completely or if any of the conditions outlined in Section 2.2 are not met.

1.7. Environmental requirements

Normal ambient conditions in temperature, pressure and gas composition are sufficient. The chamber exterior air lock doors shall be opened in this test so no special environment control of the interior of the chamber is required.

1.8. Safety aspects

No special safety risks have been identified for this test.

1.9. Test set-up

Ancillary Equipment Required for Test

1. Tray connector and spacer bars (supplied)

2. Growing trays (supplied)

Verification prior to test performance: confirmation of settings in the Table 1.

Sub-system	Components concerned	Tag (P&ID)	Status at start	Remark/setpoint
Air Lock	Interior Air Lock Doors (A&C)	N/A	Closed	
Air Lock	Exterior Air Lock Doors (A&C)	N/A	Closed	Air lock C should have two trays in position to demonstrate their proper

removal

1.10. Test Procedure

Video logs of the following steps are available.

Date: Time:			Test Engineer/operator: ESA/UoG Representative:				
Seq Nb.	Description	Required/No minal		Remarks/Calculation	Pass (F)	(P)/	Fail
1	Demonstration of door A opening and tray mounting			MPP_HPC1_Exterior_Door_A_Operation _and_Tray_Mounting.mpeg			
2	Exterior Air Lock Door A is unlatched around the perimeter and opened fully						
3	Confirm activation of LED (ZI_4100_01) indicator to indicate exterior door A is open	LED (ZI_4100_01) indicates door open					
4	Place a single plant growing tray on the conveyor rails of the air lock						
5	Place an additional plant growing tray on the conveyor rails of the air lock						
6	Connect the two growing trays to each other using the inner most hole on two spacer bars. Position the bars on the connection posts of each growing tray.			Ensure trays are level on the rails			
7	Close exterior air lock door and secure latches along the door perimeter						

8	Ensure de-activation of the LED (ZI_4100_01) indicator on the exterior air lock door A to show door is closed	LED (ZI_4100_01) indicates door Closed		
9	Unlatch exterior air lock door A and open fully. Confirm LED indicates door open.	LED (ZI_4100_01) indicates door Open		
10	Exterior air lock door A is closed with a paper obstruction of 2mm thickness in place within 5 cm of the upper contact switch (ZS_4100_01)			
11	Confirm that the Exterior Air Lock Door A LED (ZI_4100_01) indicates the door is still open or obstructed.	LED (ZI_4100_01) indicates door Open		
12	Exterior Air Lock Door A is opened and the paper obstruction removed. Visual inspection for deformation in the sealing gasket is made			
13	Exterior air lock door A is closed again with the paper obstruction of 2mm thickness in place within 5 cm of the lower contact switch (ZS_4100_02)	LED (ZI_4100_01) indicates door Open		
14	Exterior Air Lock Door A is opened and the paper obstruction removed. Visual inspection for deformation in the sealing gasket is made			
15	End video log of door A opening and tray mounting			
16	Demonstration of door C opening and tray mounting		MPP_HPC1_Exter _and_Tray_Mounti	ior_Door_C_Operation ng.mpeg
17	Exterior Air Lock Door C is unlatched around the perimeter and opened fully			
18	Confirm activation of LED (ZI_4101_01) indicator showing exterior door C is open	LED (ZI_4101_01) indicates door open		

19	Dis-connect the two growing trays (present in the air lock C at the test start) from each other by removing the spacer bars			
20	Remove both trays from the air lock in sequence			
21	Close exterior air lock door C and secure latches along the door perimeter			
22	Ensure de-activation of the LED (ZI_4101_01) indicator	LED (ZI_4101_01) indicates door Closed		
23	Unlatch exterior air lock door C and open fully. Confirm LED (ZI_4101_01) indicates door open.	LED (ZI_4100_01) indicates door Open		
24	Exterior air lock door C is closed with a paper obstruction of 2mm thickness in place within 5 cm of the upper contact switch (ZS_4101_01)			
25	Confirm that the Exterior Air Lock Door C LED (ZI_4101_01) indicates the door is still open or obstructed.	LED (ZI_4101_01) indicates door Open		
26	Exterior Air Lock Door C is opened and the paper obstruction removed. Visual inspection for deformation in the sealing gasket is made			
27	Exterior air lock door C is closed again with the paper obstruction of 2mm thickness in place within 5 cm of the lower contact switch (ZS_4101_02)	LED (ZI_4101_01) indicates door Open		
28	Exterior Air Lock Door C is opened and the paper obstruction removed. Visual inspection for deformation in the sealing gasket is made			
29	End demonstration of door C opening and tray mounting			

1.11. Conclusions

To be competed in the annotated procedures document

1.12. Deviations

Seq. Nb.	Description of the modification	Justification

2. Interior Air Lock Door Functional Testing

1.1. Procedure ID: MPP-HPC1-INTERIOR_AIRLOCK_DOOR - FT

1.2. Introduction

The aim of this test is to demonstrate the operation of the interior air-lock doors and the conveyer through the glove boxes. The test also demonstrates the procedures for tray mounting/removal into the main growing volume.

1.3. Acronyms used in this test plan procedure

None

1.4. Applicable documents

Technical Annex to SOW ref: TEC-MCT/2005/3466/In/CP TN 85.71 including P&ID

1.5. Video Log File Names: (from TN 85.83)

MPP_HPC1_Interior_Door_A_and_C_Operation_and_Tray_Mounting.mpeg

1.6. Acceptance/rejection criteria

1.6.1. General

The test is considered successful when the conditions in Section 2.2 are met

1.6.2. Acceptance criteria

- 1. The two interior air lock doors may be opened and securely closed by an operator without excessive force or physical exertion by the operator
- 2. The connection/removal of growing trays on the main conveyer system can be demonstrated and that connection can be made without excessive physical exertion by the operator
- 3. The procedures for operation of the interior air lock door and the connection/removal of growing trays are clearly documented in video log.

1.6.3. Rejection criteria

The test shall be repeated if the any of the conditions outlined in Section 2.2 are not met.

1.7. Environmental requirements

Normal ambient conditions in temperature, pressure and gas composition are sufficient. The chamber exterior air lock doors shall be closed in this test but no special environment control of the interior of the chamber is required.

1.8. Safety aspects

No special safety risks have been identified for this test.

1.9. Test set-up

Ancillary Equipment Required for Test

- 1. Latex or Vinyl gloves to fit operator's hand
- 2. Conveyer system bridges placed on floor of air locks (supplied)
- 3. Tray connector and spacer bars (supplied)
- 4. Growing trays (supplied)
- 5. Conveyer immobilization rods (supplied)

Verification prior to test performance: confirmation of settings in the Table 1.

Sub-system	Com	ponents concerned	Tag (P&ID)	Status at start	Remark/set	point	
Air Lock	Interi	ior Air Lock Doors (A&C)	N/A	Closed			
Air Lock	Exter	rior Air Lock Doors (A&C)		Closed	Air lock C s	should have	two
			N/A		trays in	position	to

				demonstrate their proper removal
Irrigation	Irrigation Shut-Off Valve	HV_4106_02	Closed	During this procedure water must not be flowing into the growing trays

1.10. Test Procedure

Video logs of the following steps are taken. The camera should be focused and recording before their execution

			Test Engineer/operator: ESA/UoG Representative:				
Seq Nb.	Description	Required/No minal	Measured/ calculated	Remarks/Calculation	Pass (F)	(P)/	Fail
1	Start demonstration of interior air lock door A opening and tray mounting			MPP_HPC1_Interior_Door_A_and_C_O peration_and_Tray_Mounting.mpeg			
2	The operator places vinyl or latex gloves on his/her hands						
3	The operator then places his/her gloved hands inside the two Neoprene gloves of air lock A						
4	The operator takes the polypropylene lift rod in his/her left/right hand (through the glove box) and uses it to grasp the upper steel support of the interior air lock door						
5	The upper steel support is then rested upon the rear facing supports located on the ceiling of the airlock.						
6	The lower steel support grasped, the interior door is folded up, and the support rod is rested upon the front facing supports located on the ceiling of the airlock.						

1.11. Conclusions To be competed in the annotated procedures document

1.12. Deviations

Seq. Nb.	Description of the modification	Justification

2. Air Lock Purge System Functional Testing

1.1. Procedure ID: MPP-HPC1-AIRLOCK_PURGE - FT

1.2. Introduction

The aim of this test is to demonstrate and test the operation of the air lock purge system, including the over-pressure passive relief valves, pressure transducers, pressure switches and purge in/vent solenoids of both air locks A and C.

Comment [Dr. Geoff2]: Ope n outlet purge – open inlet, mount passive pressure relief valve

1.3. Acronyms used in this test plan procedure

None

1.4. Applicable documents

Technical Annex to SOW ref: TEC-MCT/2005/3466/In/CP TN 85.71 including P&ID

1.5. Video/Data Log File Names:

Not Applicable

1.6. Parts Tested (P&ID Reference):

- 1. SV_4102_01, SV_4102_02, SV_4103_01, SV_4103_02
- 2. HV_4102_01 HV_4103_01
- 3. PS_4102_01, PS_4103_01
- 4. PT_4102_01, PT_4103_01
- 5. RV_4100_01, RV_4101_01

1.7. Acceptance/rejection criteria

General

The test shall be repeated if the data acquisition looks doubtful or failed completely

The test is considered successful when the conditions in Section 2.2 are met

Acceptance criteria

Proper functioning of the following parts is demonstrated, according to the conditions noted;

- 1. Air lock inlet and purge solenoids SV_4102_01, SV_4102_02, SV_4103_01, SV_4103_02 open when charged and re-main closed when no current is applied
- 2. Air lock pressure transducers PT_4102_01 and PT_4103_01 detect ambient pressure under no air-flow in the air lock and detect a slight pressure increase in the air lock volume when nitrogen gas flows through the air lock at entry regulation to 115 kPa
- 3. Air lock pressure switches PS_4102_01, PS_4103_01 are activated when nitrogen gas flows into the air lock at entry regulation of 115 kPa and passes through the purge vent solenoids
- 4. Proper functioning of the manual purge override ball valves, HV_4102_01, HV_4103_01, is demonstrated
- 5. The passive pressure relief valves RV_4101_01, RV_4103_01 are immediately activated when slight overpressure of the air lock volume to a level of 115 kPa (as confirmed by the pressure transducers PT_4102_01 and PT_4103_01) when a nitrogen gas stream is applied at 115 kPa and the purge vent solenoids, SV_4102_02 and SV_4103_02 are temporarily obstructed with the use of a temporarily installed ball valve on the purge vent line

Rejection criteria

The test shall be repeated if any of the conditions outlined in Section 2.2 are not met.

1.8. Environmental requirements

Normal ambient conditions in temperature, pressure and gas composition are sufficient. The chamber exterior and interior air lock doors shall be closed in this test but no special environment control of the interior of the chamber is required.

1.9. Safety aspects

The operator must ensure that slight over-pressure of the air locks is accomplished through by slowly obstructing the vent solenoid so as to to cause over-pressure damage to the interior air lock doors of the glass of the exterior door. A manual ball valve temporarily mounted to the purge vent solenoid will assist in control the over-pressurization rate of the air locks.

1.10. Test set-up

Ancillary Equipment Required for Test:

- 1. Nitrogen gas source and regulator (0 120 kPa delivery) to be connected to the air lock purge inlet solenoid (SV_4102_01, SV_4103_01) through a Teflon or polypropylene line
- 2. Ball valves for temporary mounting on the air lock purge vent solenoids (SV_4102_02 and SV_4103_02) to control over-pressurization tests

Sub-system	Components concerned	Tag (P&ID)	Status at start	Remark/setpoint
Air Lock	Interior Air Lock Doors (A&C)	N/A	Closed	
Air Lock	Exterior Air Lock Doors (A&C)	N/A	Closed	Air lock C should have two trays in position to demonstrate their proper removal
Air Lock	Purge Inlet Solenoids (Airlock A and C)	SV_4102_01 SV_4103_01	Closed	
Air Lock	Purge Vent Solenoids (Airlock A and C)	SV_4102_02 SV_4103_02	Closed	
Air Lock	Manual Purge Over-Ride Ball Valves (Airlock A and C)	HV_4102_01 HV_4103_01	Closed	No gas supplied to inlet solenoid at start of test
Air Lock	Pressure Switches (Airlock A and C)	PS_4102_0 PS_4103_01	Not Activated	
Air Lock	Pressure Transducers (Airlock A and C)	PT_4102_01 PT_4103_01	Reading ambient	
Air Lock	Passive Pressure Relief Valves	RV_4100_01,	Closed	

Verification prior to test performance: confirmation of settings in the Table 1.

(Airlock A and C)	RV_4101_01		
-------------------	------------	--	--

1.11. Test Procedure

			Test Engineer/operator: ESA/UoG Representative:				
Seq Nb.	Description	Required/Nomin al	Measur ed/calcu lated	Remarks/Calculation	Pass (F)	(P)/	Fail
1	The operator manually sends a charge signal to the Purge Vent Solenoid positioned in air lock A (SV_4102_02). Opening of the valve is confirmed	SV_4102_02 is OPEN		Set manual override switches for the valves on the control panel to on.			
2	The Purge Vent Solenoid positioned on air lock A (SV_4102_02) is discharged manually. Closing of the valve is confirmed.	SV_4102_02 is Closed		Set manual override switches for the valves on the control panel to off.			
3	The operator manually sends a charge signal to the Purge Inlet Solenoid positioned in air lock A (SV_4102_01). Opening of the valve is confirmed	SV_4102_01 is OPEN		Set manual override switches for the valves on the control panel to on.			
4	The Purge Inlet Solenoid positioned on air lock A (SV_4102_01) is discharged manually. Closing of the valve is confirmed.	SV_4102_01 is CLOSED		Set manual override switches for the valves on the control panel to off.			
5	The operator manually sends a charge signal to the Purge Vent Solenoid positioned in air lock C (SV_4103_02). Opening of the valve is confirmed	SV_4103_02 is OPEN		Set manual override switches for the valves on the control panel to on.			
6	The Purge Vent Solenoid positioned on air lock C (SV_4103_02) is discharged manually. Closing of the valve is confirmed.	SV_4103_02 is Closed		Set manual override switches for the valves on the control panel to off.			

7	The operator manually sends a charge signal to the Purge Inlet Solenoid positioned in air lock C (SV_4103_01). Opening of the valve is confirmed	SV_4103_01 is OPEN	Set manual override switches for the valves on the control panel to on.
8	The Purge Inlet Solenoid positioned on air lock C (SV_4103_01) is discharged manually. Closing of the valve is confirmed.	SV_4103_01 is CLOSED	Set manual override switches for the valves on the control panel to off.
9	The manual purge over-ride ball valve of air lock A (HV_4102_01) is opened and closed to demonstrate functioning	HV_4102_01 is OPEN and CLOSED	
10	The manual purge over-ride ball valve of air lock C (HV_4103_01) is opened and closed to demonstrate functioning.	HV_4103_01 is OPENED and left CLOSED	
11	The nitrogen gas line is connected to the CLOSED manual purge over-ride ball valve of air lock A (HV_4102_01) with the regulator of the supply tank CLOSED	HV_4102_01 remains closed Regulator on N2 tank is CLOSED	
12	The operator manually sends a charge signal to the Purge Vent Solenoid positioned in air lock A (SV_4102_02). Opening of the valve is confirmed	SV_4102_02 IS OPEN	
13	The operator manually sends a charge signal to the Purge Inlet Solenoid positioned in air lock A (SV_4102_01). Opening of the valve is confirmed	SV_4102_02 IS OPEN	
14	A second operator slowly opens the regulator on the nitrogen gas supply to delivery pressure of 110 kPa		
15	The main operator slowly opens the manual purge over-ride ball valve of airlock A (HV_4102_01) to start nitrogen flow into the air lock A	HV_4102_01 OPENED SLOWLY	

16 17	The main operator confirms that the Air Lock Pressure Switch A (PS_4102_01) is activated and indicates vent flow. The operator shall also confirm that air flow is felt at the exit of the Purge Vent Solenoid of Airlock A (SC_4102_02) The manual purge over-ride ball valve of airlock A (HV 4102_01) is closed	PS_4102_01 indicates FLOW Air Flow felt at PS_4102_01 exit HV_4102_01 CLOSED	If air flow is not confirmed, raise the entry pressure of nitrogen gas at the regulator until PS_4102_01 is activated. Record and maintain that delivery pressure at the regulator.
		CLOSED	
18	The operator installs a temporary ball valve on the Airlock A Purge Vent Solenoid	TEMPORARY BALL VALVE IS OPEN	
19	The manual purge over-ride ball valve of airlock A (HV_4102_01) is opened slowly	HV_4102_01 OPENED SLOWLY	
20	The temporary ball valve on the Airlock A Purge Vent Solenoid is closed slightly until a slight over-pressure in the air lock is achieved and the Air Lock A Passive Vent (RV_4100- 01) is activated.	TEMPRORAY BALL VALVE IS CLOSDE SLOWLY	Record Pressure at which RV_4100_01 is activated
	The operator confirms that the Air Lock A Pressure Transducer (PT_4102_01) responds	RV_4100-01 IS ACTIVATED	
	to the slight over pressure. The pressure at which the Air Lock A Passive Vent (RV_4100_01) is activated is recorded	PT_4102_01 IS RESPONDING TO OVERPRESSU RE	
21	The manual purge over-ride valve on air lock A (HV_4102_01) is closed and the nitrogen gas line is disconnected and the regulator of the N2 tanks is closed. C (HV_4103_01)	HV_4102_01 is CLOSED N2 tank regulator is	

		CLOSED		
22	The nitrogen line is then connected to the CLOSED manual purge over-ride ball valve of air lock	HV_4103_01 remains closed		
23	The operator manually sends a charge signal to the Purge Vent Solenoid positioned in air lock C (SV_4103_02). Opening of the valve is confirmed	SV_4103_02 IS OPEN		
24	The operator manually sends a charge signal to the Purge Inlet Solenoid positioned in air lock C (SV_4103_01). Opening of the valve is confirmed	SV_4103_01 IS OPEN		
25	A second operator slowly opens the regulator on the nitrogen gas supply to delivery pressure of 110 kPa			
26	The main operator slowly opens the manual purge over-ride ball valve of airlock C (HV_4103_01) to start nitrogen flow into the air lock C	HV_4103_01 OPENED SLOWLY		
27	The main operator confirms that the Air Lock Pressure Switch C (PS_4103_01) is activated and indicates vent flow. The operator shall also confirm that air flow is felt at the exit of the Purge Vent Solenoid of Airlock C (SV_4103_02)	indicates FLOW Air Flow felt at SV_4103_02 exit		
28	The manual purge over-ride ball valve of airlock C (HV_4103_01) is closed	HV_4103_01 CLOSED		

29	The operator removes the temporary ball valve from Air Lock A and mounts it on the Airlock C Purge Vent Solenoid (SV_4103_02)			
30	The manual purge over-ride ball valve of airlock C (HV_4103_01) is opened slowly. Air flow is confirmed at the outlet of the Air Lock C Purge Vent Solenoid (SV_4103_02)	OPENED		
		SV_4103_02 exit		
31	The temporary ball valve on the Airlock C Purge Vent Solenoid (SV_4103_02) is closed slightly until a slight over-pressure in the air lock is achieved and the Air Lock C Passive Vent (RV_4101_01) is activated.		Record Pressure at which RV_4101_01 is activated	
	The operator confirms that the Air Lock C Pressure Transducer (PT_4103_01) responds	RV_4101_01 IS ACTIVATED		
	to the slight over pressure. The pressure at which the Air Lock C Passive Vent (RV_4101_01) is activated is recorded			

1.12. Conclusions

To be competed in the annotated procedures document

1.13. Deviations

Seq. Nb.	Description of the modification	Justification
2. Lighting Sub-System Functional Testing

1.1. Procedure ID: MPP-HPC1-LIGHTING-FT

1.2. Introduction

The aim of this test is to demonstrate the proper functioning of the chamber lighting system. This includes demonstration of proper functioning of the lamp loft fans, temperature sensors, air flow indicators and the relays and contactors for illumination of the 2 HPS lamp strings and the MH lamp string. Testing of the functioning of factory calibrated PAR sensors is also completed.

1.3. Acronyms used in this test plan procedure

LHPS – High Pressure Sodium lamp LMH – Metal Halide lamp PAR – Photosynthetically Active Radiation

1.4. Applicable documents Technical Annex to SOW ref: TEC-MCT/2005/3466/In/CP TN 85.71 including P&ID

1.5. Data Log File Name:

MPP_HPC_-LIGHTING_FT.txt

1.6. Parts Tested (P&ID Reference):

1. TT_4105_01, TT_4105_02, TT_4105_03 (lamp loft temperature transducers)

2. FAN_4105_01, FAN_4105_02, FAN_4105_03 (lamp loft cooling fans)

3. FSL_4105_01, FSL_4105_02, FSL_4105_03 (lamp loft air flow sensors)

4. RT_4104_01, RT_4104_02, RT_4104_03 (PAR sensors)

5. IY_4104_01, IY_4104_02, IY_4104_03 (lamp string relays and contactors)

6. LHPS_4104_01 through _06 (HPS Lamps)

7. LMH_4104_01 through _03 (MH Lamps)

1.7. Acceptance/rejection criteria

1.7.1. General

The test shall be repeated if the data acquisition looks doubtful or failed completely The test is considered successful when the conditions in Section 2.2 are met

1.7.2. Acceptance criteria

- 1. The lamps in string HPSa illuminate when activated by the controller and yield an average PAR level of not less than 300 μ E at crop height (30 cm above bench) when the sensor is placed in the horizontal centre of the reflector for each lamp in string HPSa.
- 2. The lamps in string HPSb illuminate when activated by the controller and yield an average PAR level of not less than 300 µE at crop height (30 cm above bench) when the sensor is placed in the horizontal centre of the reflector for each lamp in string HPSb
- 3. The lamps in string MH illuminate when activated by the controller and yield an average PAR level of not less than 300 μ E at crop height (30 cm above bench) when the sensor is placed in the horizontal centre of the reflector for each lamp in string MH
- 4. The lamp loft fans all remain functional during periods of liiumination
- **5.** All alarms, listed in the test procedure, are activated
- **6.** The temperature of the lamp loft does not exceed 40 C at any time during lamp operation

1.7.3. Rejection criteria

The test is considered to have failed under the following conditions;

• When any of the conditions stated above are not met

• When any of the data acquisition looks doubtful or failed completely

1.8. Environmental requirements

Normal ambient conditions in temperature, pressure and gas composition are sufficient. The chamber air lock doors shall remain open during this test (i.e. chamber not sealed) so as to allow the test engineer/operator the ability to take PAR readings.

1.9. Safety aspects

The operator shall take care when entering the chamber to take PAR measurements. The operator taking measurements should weigh less than 100 Kg.

The growing trays should be removed from the chamber to avoid a trip hazard when moving about the chamber interior.

The air flow baffles should not be in position as they will not support any operator's weight.

The operator entering the chamber shall be aware of the air flow return duct in the chamber floor. Care must be taken not to trip.

Because the operator will be inside the chamber, the air lock doors must remain open during this test.

1.10. Test set-up

Ancillary Equipment Required for Test:

3 factory calibrated PAR sensors installed in chamber (RT_4104_01, RT_4104_02, RT_4104_3),

- standard flash light (torch)
- hand-held anemometer (0 8 m/s air velocity sensing required)
- step ladder

Verification prior to test performance: confirmation of settings in the Table 1.

Sub-system	Components concerned	Tag (P&ID)	Status at start	Remark/setpoint
Lighting System	Lamp String HPSa , including lam	ps: IY_4104_01	Off	
	LHPS_4104_01 (HPS Lamp Aa)			

LHPS_4104_02 (HPS Lamp Ba) LHPS_4104_03 (HPS Lamp Ca)			
Lamp String HPSb, including lamp LHPS_4104_04 (HPS Lamp Ab) LHPS_4104_05 (HPS Lamp Bb) LHPS_4104_06 (HPS Lamp Cb)	s: IY_4104_02	Off	
Lamp String MH, including lamps: LMH_4104_01 (MH Lamp A) LMH_4104_02 (MH Lamp B) LMH_4104_03 (MH Lamp C)	IY_4104_03	Off	
PAR Sensor A	RT_4104_01	Logging	Should initially read 0 uE and respond to a flash light test*
PAR Sensor B	RT_4104_02	Logging	Should initially read 0 uE and respond to a flash light test*
PAR Sensor C	RT_4104_03	Logging	Should initially read 0 uE and respond to a flash light test*
Loft Fans A	FAN_4105_01 and FAN_4105_02	Off	Both fans in loft A should be off
Loft Fans B	FAN_4105_03 and FAN_4105_04	Off	Both fans in loft B should be off
Loft Fans C	FAN_4105_05 and FAN_4105_06	Off	Both fans in loft C should be off
Loft Temperature Sensor (Loft T –	A) TT_4105_01	Logging	Should read ambient temperature
Loft Temperature Sensor (Loft T –	B) TT_4105_02	Logging	Should read ambient temperature
Loft Temperature Sensor (Loft T –	C) TT_4105_03	Logging	Should read ambient temperature
Loft Air Flow Sensor (Flow – A)	FSL_4105_01	Logging	Should indicate no air flow in loft

ĺ	Loft Air Flow Sensor (Flow – B)	FSL_4105_02	Logging	Should indicate no air flow in loft
ſ	Loft Air Flow Sensor (Flow – C)	FSL_4105_03	Logging	Should indicate no air flow in loft

1.11. Test Procedure

Date:		Test Enginee			
Time:			ESA/UoG Re	epresentative:	
Seq.	Description	Required/Nomi	Measured/	Remarks/Calculation (raw	Pass (P)/ Fail (F)
Nb.		nal	calculated	data are expected as well as	
				their treatment)	
1	Position and centre PAR Sensor A (RT_4104_01)				
	underneath the HPS lamp reflector that is member of				
	string HPSa in module A and fix it at a height of 30 cm				
	above growing tray height using the supplied support				
	rack				
2	Position and centre PAR sensor APAR-501B				
	underneath the HPS lamp reflector that is member of				
	string HPSa in module B and fix it at a height of 30 cm				
	above growing tray height using the supplied support				
_	rack				
3	Position and centre PAR sensor APAR-501C				
	underneath the HPS lamp reflector that is member of				
	string HPSa in module C and fix it at a height of 30 cm				
	above growing tray height using the supplied support				
4	rack	F ON			
4	Operator manually activates the lamp loft fans for loft	Fans ON			
-	A, B and C (FAN 4105_01, _02 and _03).	A			
5	Operator confirms operation of the fans by taking	Anemometer			
	readings at the outlet (back) side of the fans with a	readings from			
	hand-held anomemeter. All fans should yield a	each fan > 0.10			
<u> </u>	reading of greater than 0.10 m/s	m/s			
6	Operator confirms air flow indicators in each lamp loft	FSL_4105_01,			
	indicate air flow (FSL_4105_01, _02 and _03)	_02 and _03			
7	Oneverter confirme that terms and us concerns in such	indicate air flow			
1	Operator confirms that temperature sensors in each	TT_4105_01,			

	lamp loft read ambient temperatures (TT_4105_01, _02 and _03)	read AMBIENT		
8	Controller activates relay to lamp string HPSa to turn string HPSa ON	LHPS_4104_0 1, _03 and _05 are ON		
9	Confirm readings of PAR sensors A-C (RT_4104_01, _02 and _03) each read above 300 uE corresponding to illumination of lamp string HPSa	RT_4104_01, _02 and _03 read > 300 uE		
10	Operator manually shuts off shuts off relay to lamp string HPSa			
11 12	Confirm all air loft fans remain running Position and centre PAR sensor APAR-501A underneath the HPS lamp reflector that is member of string HPSb in module A			
13	Position and centre PAR sensor APAR-501B underneath the HPS lamp reflector that is member of string HPSb in module B			
14	Position and centre PAR sensor APAR-501C underneath the HPS lamp reflector that is member of string HPSb in module C			
15	Controller activates relay to lamp string HPSb			
16	Confirm continued operation of all lamp loft fans with indication from loft air flow sensors (record)			
17	Confirm and record readings of PAR sensors APAR- 501 A – C each read above 300 uE corresponding to illumination of HPSb			
18	Controller shuts off relay to lamp string HPSb			
19	Confirm all air loft fans remain running			
20	Position and centre PAR sensor APAR-501A underneath the MH lamp reflector that is member of string MH in module A			
21	Position and centre PAR sensor APAR-501B underneath the MH lamp reflector that is member of string MH in module B			
22	Position and centre PAR sensor APAR-501C underneath the MH lamp reflector that is member of			

	string MH in module C			
23	Controller activates relay to lamp string MH			
24	Confirm continued operation of all lamp loft fans with indication from loft air flow sensors (record)			
25	Confirm and record readings of PAR sensors APAR- 501 A – C each read above 300 uE corresponding to illumination of MH			
26	Controller activates relay to lamp string HPSa			
27	Controller activates relay to lamp string HPSb			
28	Controller activates relay to lamp string MH			
29	Confirm continued operation of all lamp loft fans with indication from loft air flow sensors (record)			
30	Confirm log of lamp loft temperature sensors Loft-T A- C, record initial values			
31	Allow lamps to run for 1 hour to warm up			
32	To test the temperature override control; lower the temperature limits on the control system to invoke a lamp loft high temperature alarm condition. Ensure the lamps shut off.			
34	Confirm continued operation of lamp loft fans			
35	Turn off lamps and let cool for 15 minutes			
35	Reset lamp loft temperature limits and re-enable lamps			
36	Controller instructs lamp strings (HPSa, HPSb, and MH) to operate for an extended period.	14 hours (nominal)		
37	After this period confirm shut-off of all lamp strings.		Fans may continue to run if the lamp loft temperature is above the set point.	

1.12. Conclusions To be competed in the annotated procedures document

1.13. Deviations

Seq.	Description of the modification	Justification
------	---------------------------------	---------------

Nb.	

2. Air Circulation Fan Functional Testing

1.1. Procedure ID: MPP-HPC1 – Blower_Assembly – FT

1.2. Introduction

The aim of this test is to demonstrate the proper functioning of the centrifugal blower, VFD motor, pulley and belt drive for the motor, rotary feed through shaft and by consequence, the chamber shell ducting and louvers.

The test begins with the VFD motor set to 50 Hz which will enable the main centrifugal blower to run at full speed. After equilibration and air speed measurements taken in the centre front of the louvers at 10 minute intervals the readings are averaged and reported. The controller then instructs the VFD to reduce the VFD set point in 10 Hz increments and repeated measures of air flow are taken. The test concludes with a demonstration of the ramp-up and ramp-down capability in starting or shutting off of the motor of the main centrifugal blower.

1.3. Acronyms used in the test

VFD – Variable Frequency Drive (of the motor driving the main centrifugal blower)

1.4. Applicable documents

Technical Annex to SOW ref: TEC-MCT/2005/3466/In/CP TN 85.71 including P&ID VFD Operation Manual Motor Operation Manual

1.5. Data Log File Name:

MPP_HPC1__AIR_CIRCULATION_FT.txt

1.6. Parts Tested (P&ID Reference):

- 1. BLWR_4111_01 (Air Circulation Fan)
- 2. MVFD_4111_01 (Air Circulation Motor)
- 3. FT_4111_01 (Air Velocity Sensor)

1.7. Acceptance/rejection criteria

1.7.1. General

The test shall be repeated if the data acquisition looks doubtful or failed completely

The test is considered successful when the conditions in Section 2.2 are met:

1.7.2. Acceptance criteria

The functional tests of the air handling sub-system components are deemed acceptable when;

- when the timed average of air flow readings measured with a hand-held anemometer positioned over each of the 6 louvers and in the air flow return plenum each yield a value of not less than XXX when the motor is running at full speed as set by the VFD of the motor to 60 Hz.
- When the VFD successfully ramps from 0 Hz to 50 Hz without damage
- When the VFD successfully ramps down from 50 Hz to 0 Hz without damage

1.8. Environmental requirements

Normal ambient conditions in temperature, pressure and gas composition are sufficient. The chamber air lock doors shall remain open during this test (i.e. chamber not sealed).

1.9. Safety aspects

When the motor and pulley are in operation under the chamber belly, the operator shall take care to get items caught in the fan belt and pulley assembly. Yellow caution tape should surround the perimeter of the belly.

The operator shall take care when entering the chamber to take air speed measurements. The operator taking air speed measurements should weigh less than 100 Kg.

The growing trays should be removed from the chamber to avoid a trip hazard when moving about the chamber interior. The air flow baffles should not be in position as they will not support any operator's weight.

The operator entering the chamber shall be aware of the air flow return duct in the chamber floor. Care must be taken not to trip.

Because the operator will be inside the chamber, the air lock doors must remain open during this test.

1.10. Test set-up Equipment required for test performance (ancillary equipment and its specifications): Hand held anemometer.

Sub-system	Components concerned	Tag (P&ID)	Status at start	Remark/setpoint
Air handling unit	Main centrifugal blower		Idle	
	VFD Motor		Off	

Verification prior to test performance: confirmation of settings in the Table 1.

Test Procedure 1.11.

Step by step description of the operations performance

Date:				Test Engineer/operator:			
Time:			ESA/UoG Re	epresentative:			
Seq.	Description	Required	Measured/	Remarks/Calculation (raw data are expected as well	Pass		
Nb.		/Nominal	calculated	as their treatment)	(P)/ Fail (F)		
1	Visual inspection of the rotary feed-through shaft and pulley system to confirm that there is no deflection in the assembly at system rest						
2	The operator activates the VFD to ramp from 0 Hz to 50 Hz over a period of 30 seconds			Refer to VFD manual for operation and set-up of the VFD			
3	Visual confirmation of air-flow at full speed of the VFD motor is made by looking for deflection of flag tape tied to the louvers of the internal growing volume						
4	The operator enters chamber with handheld anemometer or positions the anemometer in the air return outlet duct from the blower						
5	With fan running at full speed (VFD set to 50 Hz), operator takes measurement of air flow (m/s) in front of each of the louvers and in the return plenum						
6	After 2 minutes of operation, another set of readings with the handheld anemometer is taken in the centre front of each of the louvers and in the plenum						
7	After 2 additional minutes of operation, another set of readings with the handheld anemometer is taken in the centre front of each of the louvers.						

8	The average of these readings is recorded. Readings must exceed air flow prescriptions of > 0.8 m/S	>= m/S	0.8		
6	The operator manually reduces the VFD set point to 40 Hz	>= m/S	0.1		
7	Three additional sets of air velocity readings are taken as prescribed in steps 5-7 with the VFD running at 40Hz	>= m/S	0.1		
8	The operator manually reduces the VFD set point to 30 Hz	>= m/S	0.1		
9	Three additional sets of air velocity readings are taken as prescribed in steps 5-7 with the VFD running at 30Hz	>= m/S	0.1		
10	The operator manually reduces the VFD set point to 20 Hz	>= m/S	0.1		
11	Three additional sets of air velocity readings are taken as prescribed in steps 5-7 with the VFD running at 20Hz	>= m/S	0.1		
12	The operator manually reduces the VFD set point to 10 Hz	> 0 n	n/s		
13	Three additional sets of air velocity readings are taken as prescribed in steps 5-7 with the VFD running at 10Hz	> 0 n	n/s		
14	The operator manually reduces the VFD set point to 10 Hz	> 0 n	n/S		
16	The operator shuts off VFD and main centrifugal blower remains idle				

1.12. Conclusions

To be competed in the annotated procedures document

1.13. Deviations

Seq. Nb.	Description of the modification	Justification

2. Gas Analysis System Functional Testing

1.1. Procedure ID: MPP-HPC1-GAS_ANALYSIS – FT

1.2. Introduction

The aim of this test is to demonstrate and test the operation of the gas analysis system components including functioning of the IRGA for CO2, O2 analyzer, mass flow controller for CO2 injection, manual injection over-ride valve and the CO2 injection line solenoid.

1.3. Acronyms used in this test plan procedure

IRGA – InfraRed Gas Analyzer for CO2 PO2 – Paramagnetic Analyzer for O2

1.4. Applicable documents

Technical Annex to SOW ref: TEC-MCT/2005/3466/In/CP TN 85.71 including P&ID

1.5. Video/Data Log File Names:

MPP_HPC1__GAS ANALYSIS_FT.txt

1.6. Parts Tested (P&ID Reference):

- 1. AT_4113_01 (CO2 Analyzer/IRGA)
- 2. AT_4113_02 (O2 Sensor)
- 3. FC_4113_01 (Mass Flow Controller for CO2)
- 4. SV_4113_01 (CO2 injection line solenoid)
- 5. HV_4113_01 (CO2 injection line manual over-ride valve)

1.7. Acceptance/rejection criteria

General

The test shall be repeated if the data acquisition looks doubtful or failed completely

The test is considered successful when the conditions in Section 2.2 are met

Acceptance criteria

Proper functioning of the following parts is demonstrated, according to the conditions noted;

- 1. The IRGA (AT_4113_01) reads ambient CO2 (300 450 ppm) concentrations prior to test
- 2. The IRGA (AT_4113_01) responds to increases to 1500 ppm in the chamber growing volume with manual CO2 injection
- 3. The PO2 (AT_4113_02) reads ambient conditions prior to and during the test
- 4. The Mass Flow Controller for CO2 is manually controllable to a set point of 1 L/min and flow of CO2 through the MFC is confirmed
- 5. Proper functioning of the CO2 injection line solenoid (SV_4113_01) and manual override valve (HV_4113_01) is demonstrated

Rejection criteria

The test shall be repeated if the data acquisition looks doubtful or failed completely or if any of the conditions outlined in Section 2.2 are not met.

1.8. Environmental requirements

Normal ambient conditions in temperature, pressure and gas composition are sufficient. The chamber exterior and interior air lock doors shall be closed in this test but no special environment control of the interior of the chamber is required.

1.9. Safety aspects

The operator must ensure that slight over-pressure of the air locks is accomplished through by slowly obstructing the vent solenoid so as to to cause over-pressure damage to the interior air lock doors of the glass of the exterior door. A manual ball valve temporarily mounted to the purge vent solenoid will assist in control the over-pressurization rate of the air locks.

1.10. Test set-up

Ancillary Equipment Required for Test:

- 1. CO2 gas source (pure CO2) and regulator (0 120 kPa delivery) to be connected to the CO2 injection line inlet solenoid (SV_4113_01) through a Teflon or polypropylene line
- 2. Calibrated air source (2000 ppm CO2, 30% O2, balance Nitrogen, certified)) and regulator (0 120 kPa delivery) to be connected to the CO2 injection line inlet solenoid (SV_4113_01) through a Teflon or polypropylene line
- 3. Portable data logger set to record signals from PO2 and IRGA at 5 second intervals to calculate mixing time.

Verification prior to test performance: confirmation of settings in the Table 1.

Sub-system	Components concerned	Tag (P&ID)	Status at start	Remark/setpoint
Gas Analysis	IRGA	AT_4113_01	Connected to growing volume sample line, actively sampling and reading ambient conditions	Confirm air flow through analyzer and operation of analyzer sampling pump. Analyzer sample return is back to the chamber growing volume to create a closed sampling system
Gas Analysis	PO2	AT_4113_02	Connected to growing volume sample line, actively sampling and reading ambient conditions	
Gas Analysis	Mass Flow Controller for CO2	FC 4113 01	Closed (0 L/min flow)	
Gas Analysis	CO2 injection line solenoid	SV_4113_01	Closed	
Gas Analysis	CO2 injection line manual over-Ride ball valves	HV_4113_01	Closed	No CO2 gas supplied to inlet solenoid at start of test
Air Lock	Exterior Air Lock Doors	N/A	Open	
Air Lock	Interior Air Lock Doors	N/A	Open	
Air Circulation	Main Blower and VFD	BLWR_4111_01, MVFD_4111_01	Running at full speed (60 Hz)	

1.11. Test Procedure

Date:			0	neer/operator:			
Time:				Representative:			
Seq	Description	Required/Nomin	Measur	Remarks/Calculation	Pass	(P)/	Fail
Nb.		al	ed/calcu lated		(F)		
1	With the IRGA sampling (and stabilized) from	AT 4113 01					
	the interior growing volume, the operator	reading					
	records its reading	ambient CO2					
	0	(350 – 400					
		ppm)					
2	With the PO2 sampling (and stabilized) from	AT_4113_02					
	the interior growing volume, the operator	reading					
	records its reading	ambient O2					
	5	(21%)					
3	The mass flow controller is manually set to	FC 4113 01		See MFC operating manual for			
	delivery CO2 at a rate of 1 L/min	is set to		manual setting of MFC			
		deliver CO2		-			
		at 1 L/min					
4	The operator uses the manual switch at the	SV_4113_01					
	control panel to open the injection solenoid	is OPEN					
	(SV_4113_01)						
5	The CO2 tank regulator is opened to a	CO2 tank		Set manual override switches for the			
	delivery pressure of 110 kPa	regulator		valve on the control panel to on.			
		delivery at					
		110 kPa					
6	The manual CO2 injection (SV_4113_01)	SV_4113_01					
	override valve is opened slowly to start the	is OPENED					
	flow of CO2 into the chamber growing volume	SLOWLY					
7	The operator watches the IRGA	AT_4113_01		Record/log rising CO2 levels at 5			
	(AT_4113_01) display to confirm and monitor	indicating		second intervals to calculate chamber			
	a rise in chamber growing volume CO2	rising CO2		mixing/equilibration time. May use a			
	concentrations.			portable data logger (CR&) or the			
		AT_4113_02		control system.			

	The PO2 (AT_4113_02) should continue to read ambient concentrations.	reading ambient O2 (21%)	
8	The manual CO2 injection (SV_4113_01) override valve is closed to stop the air flow into the chamber	SV_4113_01 is CLOSED	
9	The CO2 supply line is disconnected from the injection solenoid (SV_4113_01) and replaced with a calibrated air stream to test function of PO2 (AT_4113_02). The regulator of the calibrated air supply tank should remain off	Calibrated Air injection line is connected to inlet solenoid (AT_4113_02) Calibrated air line regulator OFF	
10	The regulator on the calibrated air tank is opened to 110 kPa delivery pressure	Calibrated Air Supply tank regulator delivery at 110 kPa	
11	The manual CO2 injection (SV_4113_01) override valve is opened slowly to start the flow of calibrated air into the chamber growing volume	HV_4103_01 is OPENED	
12	The operator watches the IRGA (AT_4113_01) display to confirm and monitor a rise in chamber growing volume CO2 concentrations to 2000 ppm The PO2 (AT 4113 02) rise to 30% O2	AT_4113_01 indicating rising CO2 AT_4113_02 reading 30%	Record/log rising CO2 levels at 5 second intervals to calculate chamber mixing/equilibration time. May use a portable data logger (CR&) or the control system.
13	The manual CO2 injection (SV_4113_01) override valve is closed to stop the air flow into the chamber when CO2 levels reach 2000 ppm AND O2 levels reach 30% through	HV_4113_01 is CLOSED	

	purging of the main chamber growing volume with calibrated air.		
14	The operator uses the manual switch at the control panel to CLOSE the injection solenoid (SV_4113_01)		

1.12. Conclusions

To be competed in the annotated procedures document

1.13. Deviations

Seq. Nb.	Description of the modification	Justification

2. Chamber Shell Integrity Leakage Test

1.1. MPP-HPC1-LEAKAGE-FT

1.2. Introduction

The aim of this test is to demonstrate the integrity of the chamber shell after assembly. CO2 is injected into the chamber in a closed and idle configuration (all sub-systems off, main centrifugal blower excepted) to a set-point of 1500 ppm. CO2 is allowed to passively decay through the chamber shell. The rate of leakage is calculated as the slope of a tangent to a 48 hour CO2 curve at the operational condition of 1000 ppm and is expressed as % Leakage of CO2 (relative to initial value) per day.

1.3. Acronyms used in this test plan procedure

MFC – Mass Flow Controller IRGA – Infra-Red Gas Analyzer for CO2 (0-6000 ppm)

1.4. Applicable documents

Technical Annex to SOW ref: TEC-MCT/2005/3466/In/CP TN 85.71 including P&ID

1.5. Data Log File Name:

MPP_HPC1__LEAKAGE_FT.txt

1.6. Parts Tested (P&ID Reference)

Chamber integrity

1.7. Acceptance/rejection criteria

General

The test shall be repeated if the data acquisition looks doubtful or failed completely

The test is considered successful when the conditions in Section 2.2 are met.

Acceptance Criteria

1. The diffusive CO2 leakage rate from inside the chamber against ambient total pressure and partial pressures of CO2, calculated as the slope of a tangent to a 48 hour CO2 concentration decay curve at the operational condition of 1000 ppm, expressed as % Leakage of CO2 (relative to initial value) per day is less than 7% per day

Rejection Criteria

1. The diffusive CO2 leakage rate from inside the chamber against ambient total pressure and partial pressures of CO2, calculated as the slope of a tangent to a 48 hour CO2 concentration decay curve at the operational condition of 1000 ppm, expressed as % Leakage of CO2 (relative to initial value) per day is greater than 7% per day

1.8. Environmental requirements

Normal ambient conditions in temperature, pressure and gas composition are sufficient. The chamber exterior air lock doors shall remain closed during this test but the interior air lock doors shall remain open.

During the test the CO2 concentration will be increased to 1200 ppm with the main centrifugal blower running.

1.9. Safety aspects

- 1. The operator must not enter the chamber during the test due to high CO2 levels
- 2. The exterior doors and interface ports must remain sealed.

1.10. Test set-up

Ancillary Equipment Required for Test:

- 4. CO2 gas source (pure CO2) and regulator (0 120 kPa delivery) to be connected to the CO2 injection line inlet solenoid (SV_4113_01) through a Teflon or polypropylene line
- 5. Control system set to record signals from PO2 and IRGA at 5 second intervals to calculate mixing time.

Verification prior to test performance: confirmation of settings in the Table 1.

Sub-system	Components concerned	Tag (P&ID)	Status at start	Remark/setpoint
Gas Analysis	IRGA	AT_4113_01	Connected to growing volume sample line, actively sampling and reading ambient conditions	Confirm air flow through analyzer and operation of analyzer sampling pump. Analyzer sample return is back to the chamber growing volume to create a closed sampling system
Gas Analysis	Mass Flow Controller for CO2	FC_4113_01	Closed (0 L/min flow)	
Gas Analysis	CO2 injection line solenoid	SV_4113_01	Closed	
Gas Analysis	CO2 injection line manual over-Ride ball valves	HV_4113_01	Closed	No CO2 gas supplied to inlet solenoid at start of test
Air Lock	Exterior Air Lock Doors	N/A	Closed	
Air Lock	Interior Air Lock Doors	N/A	Open	
Air Lock	Purge Inlet and Vent Solenoid Valves	RV_4100_01, SV_4102_01, SV_4102_02, RV_4101_01, SV_4103_01, SV_4103_02	Closed	
Air Circulation	Main Blower and VFD	BLWR_4111_01, MVFD_4111_01	Running at full speed (60 Hz)	
EC/pH	Pressure equilibration valves manually closed		Closed	
Irrigation	Irrigation Pump Inlet Manual Override	HV_4106_02	Closed	
Irrigation	Irrigation Drain Manual Override)	HV_4106_03	Closed	
Interface	All interface ports sealed		Sealed	

1.11. Test Procedure

Date:	Test Engineer/operator:
Time:	ESA/UoG Representative:

Seq.	Description	Required/Nomi	Measured/	Remarks/Calculation (raw data are	· · ·
Nb.		nal	calculated	expected as well as their treatment)	Fail (F)
1	Activate main centrifugal blower VFD to operate at 50Hz (full speed)				
2	Confirm fan operation by visual inspection of the fan belt assembly and that flag tape fixed to the air louvers show air movement				
3	With the IRGA sampling (and stabilized) from the interior growing volume, the operator records its reading	AT_4113_01 reading ambient CO2 (350 – 400 ppm)			
4	The mass flow controller is manually set to delivery CO2 at a rate of 1 L/min	FC_4113_01 is set to deliver CO2 at 1 L/min		See MFC operating manual for manual setting of MFC	
5	The operator uses the manual switch at the control panel to open the injection solenoid (SV_4113_01)	SV_4113_01 is OPEN			
6	The CO2 tank regulator is opened to a delivery pressure of 110 kPa	CO2 tank regulator delivery at 110 kPa		Set manual override switches for the valve on the control panel to on.	
7	The manual CO2 injection (SV_4113_01) override valve is opened slowly to start the flow of CO2 into the chamber growing volume	SV_4113_01 is OPENED SLOWLY			
10	The operator watches the IRGA (AT_4113_01) display to confirm and monitor a rise in chamber growing volume CO2 concentrations.	AT_4113_01 indicating rising CO2		Record/log rising CO2 levels at 5 second intervals to calculate chamber mixing/equilibration time. May use a portable data logger (CR&) or the control system.	
11	The manual CO2 injection (SV_4113_01) override valve is closed to stop the air flow into the chamber when internal CO2 levels reach 1500 ppm	AT_4113_01 indicating CO2 levels of 1500 ppm			
		SV_4113_01 is CLOSED			

12	The IRGA output is recorded by the data logger at 5 minute intervals		Data log interval set to 5 min	
13	The chamber is left in its current configuration for 48 hrs and CO2 is allowed to passively decay			
14	Data log is stopped after 48 hours and the reading from the IRGA is recorded and the end of test completion. If the reading from the IRGA is not less than 900 ppm after 48 hours, then the test is allowed to continue	Final reading from AT_4113_01 is taken (must be < 900 ppm)	Concentrations of CO2 must pass through 1000 ppm in order to calculate leakage rates	
	until passive decay results in levels less than 900 ppm			

1.12. Conclusions To be competed in the annotated procedures document

1.13. Deviations

Seq. Nb.	Description of the modification	Justification

2. EC System Functional Testing

1.1. Procedure ID: MPP-HPC1-EC – FT

1.2. Introduction

The aim of this test is to demonstrate and test the operation of the stock injection solenoids, the stock tank injection over-ride manual ball valves, the integrity of stock tanks, the EC sensor and the pressure equilibration manual ball valves.

1.3. Acronyms used in this test plan procedure

EC – Electrical Conductivity

1.4. Applicable documents

Technical Annex to SOW ref: TEC-MCT/2005/3466/In/CP TN 85.71 including P&ID

1.5. Video/Data Log File Names:

MPP_HPC1_EC_FT.txt

1.6. Parts Tested (P&ID Reference):

1. VSSL_4108_01, VSSL_4108_02 (Stock Tanks A and B)

2. SV_4108_01, SV_4108_02 (Stock A and B injection valves)

3. LSL_4108_01, LSL_4108_02 (Stock A and B tank low level switches)

4. HV_4108_01, HV_4108_02 (Stock A and B Injection Manual Over-ride Valves

5. AT_4108_01 (EC Sensor)

1.7. Acceptance/rejection criteria

1.7.1. General

The test shall be repeated if the data acquisition looks doubtful or failed completely

The test is considered successful when the conditions in Section 2.2 are met

1.7.2. Acceptance criteria

Proper functioning of the following parts is demonstrated, according to the conditions noted;

- 1. Stock Tanks A and B do not show evidence of leakage (VSSL_4108_01, VSSL_4108_02)
- 2. The functionality of the injection solenoid valves is demonstrated (SV_4108_01, SV_4108_02)
- 3. The low level switches for the stock tanks are demonstrated (LSL_4108_01, LSL_4108_02)
- 4. The manual stock injection override valves are demonstrated (HV_4108_01, HV_4108_02)
- 5. The EC sensor is demonstrated operational

1.7.3. Rejection criteria

The test shall be repeated if the data acquisition looks doubtful or failed completely or if any of the conditions outlined in Section 2.2 are not met.

1.8. Environmental requirements

Normal ambient conditions in temperature, pressure and gas composition are sufficient. The chamber exterior and interior air lock doors shall be closed in this test (leakage test running concurrently) but no special environment control of the interior of the chamber is required.

1.9. Safety aspects

No special safety considerations have been identified for this test.

1.10. Test set-up

Ancillary Equipment Required for Test:

- Hand-held EC Sensor (0 2500 uS)
 Prepared Stock A and B Solutions (see appendix MPP-HPC1-Solution-App1
 Control system set to record signals from the EC sensor at 5 second intervals
- 4. 500 mL beaker
- 5. 500 mL graduated cylinder

Verification prior to test performance: confirmation of settings in the Table 1.

Sub-system	Components concerned	Tag (P&ID)	Status at start	Remark/setpoint
Irrigation	Main Irrigation Pump	GP_4106_01	Off	
Irrigation	Manual shut-off valve to chamber	HV_4106_01	Closed	
Irrigation	Irrigation drain manual valve	HV_4106_03	Closed	
Irrigation	Irrigation by-pass isolation valves	HV_4106_04 and HV_4106_05	Open	
Irrigation	Irrigation Pump Inlet Manual Over- Ride Valve	HV_4106_02	Open	
Irrigation	Stock Tanks A and B	VSSL_4108_01, VSSL_4108_02	Filled to capacity with distilled water.	
EC	EC Sensor	AT_4108_01	Logging	Connected to data logger at 5 second intervals
EC	Stock Injection Solenoids	SV_4108_01, SV_4108_02	Closed	
EC	Stock Injection Manual Over-Ride valves	HV_4108_01, HV_4108_02	Closed	

1.11. Test Procedure

Date: Time:		Test Engineer/operator: ESA/UoG Representative:					
Seq. Nb.	Description	Required/Nominal	Meas ured/c alcula	Remarks/Calculation	Pass (F)	(P)/	Fail

			ted		
1	Ensure that the manual injection valves are closed on Stock Tanks A and B	HV_4108_02 HV_4108_01 are CLOSED			
2	Empty the Nutrient Reservoir is emptied of all liquids.	VSSL_4106_01			
3	Stock tanks A and B each filled to capacity with distilled water.				
4	Place the 500 mL beaker directly below the Stock A injection tube within the reservoir tank.				
Stock	K Tank A Flow Rate Calibration				
5	Open the Stock Tank A manual inject valve.	HV_4108_01 is OPEN			
6	Enable the Stock Tank A injection solenoid via control panel manual override switch for 30 s then disable.	SV_4108_01 is OPEN for 30 seconds			
7	Record the volume delivered from Stock Tank A by pouring the liquid from the beaker into the graduated cylinder.				
7a	Record the volume at which the Stock Tank A low level float switch is activated.	LSL_4108_01			
8	Repeat steps 6,7 until water from Stock Tank A no longer flows out.			As indicated on control screen	
9	Close the Stock Tank A manual inject valve. Create a flow rate vs volume chart from the recorded data	HV_4108_01 SV_4108_01 are CLOSED			
10	Create a flow rate vs volume chart from the recorded data for Stock Tank A				
Stock	Cank B Flow Rate Calibration				
11	Place the 500 mL beaker directly below the Stock B injection tube within the reservoir tank.				
12	Open the Stock Tank B manual inject valve.	HV_4108_02 is OPEN			

13	Enable the Stock Tank B injection solenoid via control panel manual override switch for 30 s, then disable.	SV_4108_02 is OPEN for 30 seconds	
14	Record the volume delivered from Stock Tank B by pouring the liquid from the beaker into the graduated cylinder.		
14a	Record the volume at which the Stock Tank B low level float switch is activated.	LSL_4108_02	As indicated on control screen
15	Repeat steps 14,14 until water from Stock Tank B no longer flows out.		
16	Close the Stock Tank B manual inject valve	HV_4108_02 SV_4108_02 are closed	
17	Create a flow rate vs volume chart from the recorded data for Stock Tank B		
EC S	ystem Test		
18	The hydroponics reservoir is filled, manually, with 150 L of distilled water from facility source	VSSL_4106 filled to 150 L with dH2O	May be done through open top of the reservoir
19	Fill Stock Tanks with prepared Stock A and B Solutions.		see appendix MPP-HPC1-Solution- App1
20	The main irrigation pump is started and set to provide a mixing flow	GP_4106_01 is ON	Typical setting is 60 to 70 % on the irrigation pump motor controller.
21	Adjust valves HV_4106_04'a' and 'b' to provide adequate flow through the irrigation bypass pipe and past the EC sensor.	HV_4106_04 valves are opened	50% is typical
22	The operator confirms that the EC sensor positioned on the by-pass line is logging and reading less than 100 uS	AT_4108_01 reading less than 100 uS	
23	The operator activates the Stock A injection solenoid to open	SV_4108_01 is OPEN	Use manual switch at controller panel
24	The operator opens the manual Stock A Tank injection valve to full aperture slowly so there is flow from the Stock A tank into the reservoir	HV_4108_01 OPEN	Set manual override switches for the valve on the control panel to on.
25	The operator allows approximately 500 mL	HV_4108_01	

	of Stock A solution to flow into the reservoir. Confirm that the EC sensor readings increase during injection	CLOSED alter 500mL Stock A delivered to reservoir AT_4108_01 reading increasing	
26	The operator activates the Stock B injection solenoid to open	SV_4108_02 is OPEN	Use manual switch at controller panel
27	The operator opens the manual Stock B injection override valve to full aperture slowly so there is flow from the Stock A tank into the reservoir	HV_4108_02 OPEN	Set manual override switches for the valve on the control panel to on.
28	The operator allows approximately 500 mL of Stock B solution to flow into the reservoir. Confirm that the EC sensor readings increase during injection .	HV_4108_02 CLOSED alter 500 mL Stock B delivered to resercoir AT_4108_01 reading increasing	
29	If proper amounts of Stock A and B have been injected, the EC sensor, after at least 5 minutes of mixing of the reservoir through the by-pass valve near 2000 uS	AT_4108_01 reads near 2000 uS	

1.12. Conclusions To be competed in the annotated procedures document

1.13. Deviations

Seq.	Description of the modification	Justification
Nb.		

2. pH System Functional Testing

Procedure ID: MPP-HPC1-pH – FT 1.1.

Introduction 1.2.

The aim of this test is to demonstrate and test the operation of the acid and base injection solenoids, the acid/base tank injection over-ride manual ball valves, the integrity of acid/base tanks, and the pH sensor.

Acronyms used in this test plan procedure 1.3.

None

1.4. Applicable documents Technical Annex to SOW ref: TEC-MCT/2005/3466/In/CP

TN 85.71 including P&ID

Video/Data Log File Names: 1.5.

MPP_HPC1_pH_FT.txt

Parts Tested (P&ID Reference): 1.6.

1. VSSL_4107_01, VSSL_4107_02 (Acid and Base Tanks)

2. SV 4107 01, SV 4107 02 (Acid and Base injection valves)

3. LSL 4107 01, LSL 4107 02 (Acid and Base tank low level switches)

4. HV 4107 01, HV 4107 02 (Acid and Base Injection Manual Override Valves)

5. AT 4107 01 (pH Sensor)

Acceptance/rejection criteria 1.7.

General

The test shall be repeated if the data acquisition looks doubtful or failed completely

The test is considered successful when the conditions in Section 2.2 are met

Acceptance criteria

Proper functioning of the following parts is demonstrated, according to the conditions noted;

- 1. The acid and base tanks do not show evidence of leakage (VSSL_4107_01, VSSL_4107_02)
- 2. The functionality of the injection solenoid valves is demonstrated (SV_4107_01, SV_4107_02)
- 3. The low level switches for the stock tanks are demonstrated (LSL_4107_01, LSL_4107_02)
- 4. The manual stock injection override valves are demonstrated (HV_4107_01, HV_4107_01)
- 5. The pH sensor is demonstrated operational

Rejection criteria

The test shall be repeated if the data acquisition looks doubtful or failed completely or if any of the conditions outlined in Section 2.2 are not met.

1.8. Environmental requirements

Normal ambient conditions in temperature, pressure and gas composition are sufficient. The chamber exterior and interior air lock doors shall be closed in this test (leakage test running concurrently) but no special environment control of the interior of the chamber is required.

1.9. Safety aspects

No special safety considerations have been identified for this test.

1.10. Test set-up

Ancillary Equipment Required for Test:

- 1. Hand-held pH Sensor
- 2. Prepared Acid and Base Solutions (see appendix MPP-HPC1-Solution-App1)

- Control system set to record signals from the pH sensor at 5 second intervals
 500 mL beaker
- 5. 500 mL graduated cylinder

Sub-system	Components concerned	Tag (P&ID)	Status at start	Remark/setpoint
Irrigation	Main Irrigation Pump	GP_4106_01	Off	
Irrigation	Manual shut-off valve to chamber	HV_4106_01	Closed	
Irrigation	Irrigation drain manual valve	HV_4106_03	Closed	
Irrigation	Irrigation by-pass isolation valves	HV_4106_04 and HV_4106_05	Open	
Irrigation	Irrigation Pump Inlet Manual Over- Ride Valve	HV_4106_02	Open	
Irrigation	Hydroponics reservoir	VSSL_4106	Empty	
рН	Acid and Base Tanks	VSSL_4107_01, VSSL_4107_02	Each filled to capacity with distilled water.	No leakage should be seen in acid/base tanks or allied plumbing lines
рН	pH Sensor	AT_4107_01	Logging	Connected to data logger at 5 second intervals
рН	Acid and Base Injection Solenoids	SV_4107_01, SV_4107_02	Closed	
рН	Acid and Base Manual Over-Ride valves	HV_4107_01, HV_4107_02	Closed	

Verification prior to test performance: confirmation of settings in the Table 1.

1.11. Test Procedure

Date: Time:				gineer/operator: G Representative:	
Seq. Nb.	Description	Required/Nominal	Meas ured/c alculat ed	Remarks/Calculation	Pass (P)/ Fail (F)

1	Ensure that the manual injection valves are closed on Acid and Base Tanks	HV_4107_02 HV_4107_01 are CLOSED	
2	Empty the Nutrient Reservoir is emptied of all liquids.	VSSL_4106_0 1	
3	Acid and Base Tanks are filled to capacity with distilled water.		
Acid ⁻	Tank Flow Rate Calibration		
4	Place the 500 mL beaker directly below the Acid injection tube within the reservoir tank.		
5	Open the Acid Tank manual inject valve.	HV_4107_02 is OPEN	
6	Enable the Acid Tank injection solenoid via control panel manual override switch for 30 s then disable.	SV_4107_02 is OPEN for 30 seconds	
7	Record the volume delivered from Acid Tank by pouring the liquid from the beaker into the graduated cylinder.		
7a	Record the volume at which the Acid Tank low level float switch is activated.	LSL_4107_02	
8	Repeat steps 6,7 until water from the Acid Tank no longer flows out.		As indicated on control screen
9	Close the Acid Tank manual inject valve. Create a flow rate vs volume chart from the recorded data	HV_4107_02 SV_4107_02 are CLOSED	
10	Create a flow rate vs volume chart from the recorded data for Acid Tank		
Base	Tank Flow Rate Calibration		
11	Place the 500 mL beaker directly below the Base injection tube within the reservoir tank.		
12	Open the Base Tank manual inject valve.	HV_4107_01 is OPEN	
13	Enable the Base Tank injection solenoid via control panel manual override switch	SV_4107_01 is OPEN for 30	

	for 30 s, then disable.	seconds		
14	Record the volume delivered from Base Tank by pouring the liquid from the beaker into the graduated cylinder.			
14a	Record the volume at which the Base Tank low level float switch is activated.	LSL_4107_01	As indicated on control screen	
15	Repeat steps 14,14 until water from Base Tank no longer flows out.			
16	Close the Base Tank manual inject valve	HV_4107_01 SV_4107_01 are closed		
17	Create a flow rate vs volume chart from the recorded data for Base Tank			
pH Sy	stem Test			
18	The hydroponics reservoir is filled, manually, with 150 L of distilled water from facility source	VSSL_4106 filled to 150 L with dH2O	May be done through open top of the reservoir	
19	Fill Acid and Base Tanks with prepared Solutions.		see appendix MPP-HPC1-Solution- App1	
20	The main irrigation pump is started and set to provide a mixing flow	GP_4106_01 is ON	Typical setting is 60 to 70 % on the irrigation pump motor controller.	
21	Adjust valves HV_4106_04'a' and 'b' to provide adequate flow through the irrigation bypass pipe and past the pH sensor.	HV_4106_04 valves are opened	50% is typical	
4	The operator confirms that the pH sensor positioned on the by-pass line is logging and reading near 7	AT_4107_01 reading near 7		
5	The operator activates the Acid injection solenoid to open	SV_4107_01 is OPEN	Use manual switch at controller panel	
6	The operator opens the manual Acid Tank injection valve to full aperture slowly so there is flow from the acid tank into the reservoir	HV_4107_01 OPEN	Set manual override switches for the valve on the control panel to on.	
7	The operator allows approximately 500 mL of Acid solution to flow into the	HV_4107_01 CLOSED alter		

reservoir.	500 mLL Acid	
Confirm that the pH sensor re	ngs reservoir	
decrease during injection	AT_4107_01	
	reading increasing	

1.12. Conclusions To be competed in the annotated procedures document

1.13. Deviations

Seq. Nb.	Description of the modification	Justification
2. Irrigation Sub-System Functional Testing

1.1. Procedure ID: MPP-HPC1-IRRIGATION-FT

1.2. Introduction

The purpose of this test is to demonstrate the integrity of the nutrient reservoir and plumbing, to confirm equitable flow among water cascade spigots, and to ensure operation of the main irrigation pump and outlet flow sensor.

1.3. Acronyms used in this test plan procedure

None

1.4. Applicable documents Technical Annex to SOW ref: TEC-MCT/2005/3466/In/CP TN 85.71 including P&ID

1.5. Data Log File Name:

MPP_HPC1_IRRIGATION_FT.txt

1.6. Parts Tested (P&ID Reference):

- 1. GP_4106_01 (Main Irrigation Pump)
- 2. FT_4106_01 (Irrigation Flow Sensor)
- 3. HV_4106_01 (Manual shutoff to chamber
- 4. Irrigation manifold in chamber
- 5. HV_4106_02 (Irrigation Pump Inlet Manual Override)
- 6. HV_4106_03 (Irrigation Drain Manual Override)
- 7. HV_4106_04 and HV_4106_05 (Irrigation By-pass Isolation Valves)

8. HV_4106_05, HV_4106_06, HV_4106_7, HV_4106_8 (Manifold Balancing Ball Valves) VSSL_4106 (Nutrient Reservoir)

1.7. Acceptance/rejection criteria

1.7.1. General

The test is considered successful when the conditions in Section 2.2 are met

1.7.2. Acceptance criteria

1. The test is not considered successful if there are any fluid leaks along the irrigation lines of in the reservoir

- 2. The test is not successful if the volume delivered by any spigot is less than 100 mL/min
- 3. The irrigation flow sensor is non-responsive
- 4. Any of the manual valves are not properly opened and closed

1.7.3. Rejection criteria

The test fails if any of the conditions for test success noted above are not met.

1.8. Environmental requirements

Normal ambient conditions in temperature, pressure and gas composition are sufficient.

1.9. Safety aspects

No specific safety aspects are noted

1.10. Test set-up

Ancillary Equipment Required for Test:

- 1. 20 2 $\frac{1}{2}$ " Stoppers for growth tray drains
- 2. 1 L Graduated cylinder

Verification prior to test performance: confirmation of settings in the Table 1.

Sub-system	Components concerned	Tag (P&ID)	Status at start	Remark/setpoint
Irrigation	Nutrient reservoir	VSSL_4106_01	Filled with 160L of tap	
			water	
Irrigation	All manual valves	All HV_ series valves in	All valves open	
		4106 are open		
Irrigation	Flow Sensor	FT_4106_01	Factory calibrated	

1.11. Test Procedure

Date:				Test Engineer/operator:		
Time:			ESA/UoG Representative:			
Seq. Nb.	Description	Required/Nomi nal	Measured/ calculated	Remarks/Calculation (raw data are expected as well as their treatment)	Pass (P)/ Fail (F)	
1	Install growing trays into chamber.					
2	Set irrigation pump speed controller to 60%	Nominal speed		Speed can be adjusted to provide a visually adequate flow		
3	Activate irrigation pump	GP_4106_01 is ON				
4	Adjust balancing valves to provide a visually balanced flow across the four irrigation spout manifolds.					
5	Confirm reading of irrigation flow sensor	FT_4106_01 reading				
6	Turn off irrigation pump	GP_4106_01 is OFF				
8	Remove all growing trays,.					
9	Plug all growing tray drains with rubber stoppers and re-install into chamber					
10	Set irrigation pump speed controller to 100%			Manual control on irrigation pump controller		
11	Activate irrigation pump for 5 minutes (manual timing) Record flow sensor reading	GP_4106_01 is ON for 5 minute FT_4106_01		Record flow reading from controller screen.		

		is recorded		
12	Shut off irrigation pump	GP_4106_01		
		is OFF		
13	Remove each tray, measuring the volume collected		Volume should be >= 100mL	
	using the graduated cylinder.			
14	Repeat steps 9-13 for the irrigation pump speed set to		Manually adjust speed on	
	80% and again for 60%		irrigation pump controller	
14	Create look-up table for irrigation pump (as % of full			
	speed) speed against realized flow			

1.12. Conclusions

To be competed in the annotated procedures document

1.13. Deviations

Seq. Nb.	Description of the modification	Justification

2. Thermal Control Sub-System Functional Testing

1.1. Procedure ID: MPP-HPC1-TEMPERATURE/HUMIDITY-FT

1.2. Introduction

The purpose of this test is to confirm operation of the growing volume temperature and humidity sensors, the fluid integrity of both the hot and chilled water coils and service lines, confirmation of operation of the 3 way proportional valves and the functionality of temperature sensors positioned on the coils and water service inlet and exit lines.

1.3. Acronyms used in this test plan procedure

None

1.4. Applicable documents

Technical Annex to SOW ref: TEC-MCT/2005/3466/In/CP TN 85.71 including P&ID

1.5. Data Log File Name:

MPP_HPC1_TEMPERATURE_HUMIDITY_FT.txt

1.6. Parts Tested (P&ID Reference):

TT 4112_04 - _012 (Growing volume temperature sensors)

AT 4112_01 - _03 and TT 4112_01 - _03 (growing volume humidity and temperature sensors) S3CV_4112_01 and S3CV_4112_02 (water service line control valves) TT_4112_13 - _18 (water service line entry and exit temperature sensors, coil surface temperature sensors)

1.7. Acceptance/rejection criteria

1.7.1. General

The test shall be repeated if the data acquisition looks doubtful or failed completely

The test is considered successful when the conditions in Section 2.2 are met

1.7.2. Acceptance criteria

The functional test is deemed successful if:

- all temperature sensors (TT_4112_Series) are shown to be functional
- all humidity sensors are shown to be functional
- The proportional valves may be opened with induction from external signal
- Condensate freely drains into from the collection pan into the condensate collection reservoir

1.7.3. Rejection criteria

The test has failed if any of the conditions above are not met

1.8. Environmental requirements

Normal ambient conditions in temperature, pressure and gas composition are sufficient.

1.9. Safety aspects

No special safety issues have been identified for this test.

1.10. Test set-up

Ancillary Equipment Required for Test:

6. Misting bottle

Verification prior to test performance: confirmation of settings in the Table 1.

		- <u></u>		
Sub-system	Components concerned	Tag (P&ID)	Status at start	Remark/setpoint
Air-Flow	Blower/VFD	BLWR_4111_01	Off	
		MVFD_4111_01		

1.11. Test Procedure

Date:	Date:			Test Engineer/operator:		
Time:			ESA/UoG Representative:			
Seq.	Description	Required/Nomi	Measured/	Remarks/Calculation (raw	Pass (P)/ Fail (F)	
Nb.		nal	calculated	data are expected as well as		
				their treatment)		
1	Record Initial Temperatures			Cold Source =		
				Condenser Coil =		
				Cold Exit =		
				Hot Source =		
				Heater Coil =		
				Hot Exit =		
1	Open facility supply to chilled water coil and slowly					
	(manually) open chilled water proportional valve fully					
	(S3CV_4112_01)					
2	Confirm TT_4112_13 indicates chilled water flow					
3	Confirm chilled water flow through coil by depressions			Confirm by visual inspection		
	of TT_4112_15 reading			that no leaks exist in the		
				water supply lines of in the		
				coil		
4	Confirm flow out of coil and into water return line to					
	facility by depression of TT_4112_17 reading					
5	Open facility supply to hot water coil and slowly					
	(manually) open hot water proportional valve fully					
	(S3CV_4112_02)					
6	Confirm TT_4112_14 indicates hot water flow (rise in			Confirm by visual inspection		
	temperature)			that no leaks exist in the		
				water supply lines of in the		
L				coil		
7	Confirm hot water flow through hot coil by increases in					
	TT_4112_16 reading					
8	Confirm flow out of coil and into hot water return line					
	to facility with rise in TT_4112_18 reading					
9	Fully close hot water proportional valve					
	(S3CV_4112_02)					
10	Manually record temperature sensor readings in			A B C		

	chamber growing volume (TT_4112_04 to _012)	1 2 3	
11	Activate blower and VFD (full speed)		
12	Allow for air circulation passed chilled water coil for five minutes		
13	Manually record temperature sensor readings in chamber growing volume and confirm reading of cooler temperatures (TT_4112_04 to _012)	A B C 1 2 3	
14	Using a misting bottle the operator humidifies the main growing volume	Open exterior door of chamber to gain access	
15	Confirm increased humidity readings by humidity sensors (AT_4112_01 to _03)		
16	In the humid environment, water should passively condense on the coil		
17	Confirm collection of water on the condensate tray and passive drain into to condensate reservoir	Confirm that no leakage occurs on condensate drainage line or tank by visual inspection	
18	To save time, the user manually fills the condensate collection reservoir to activate the condensate hi level switch (LSH_4110_02)	Confirm activation of hi level switch	
19	Manually activate the condensate pump (GP_4110_01) to drain the condensate reservoir until the low level switch is activated (LSL_4110_02)		

1.12. Conclusions

To be competed in the annotated procedures document

1.13. Deviations

Seq.	Description of the modification	Justification
Nb.		

1. Crop Testing

5.1. Consumables required for Operational Testing with Crops

• Harvesting and Preparation Tools, including:

- O Balance for dry and fresh weight masses and micro-nutrient/hydroponics salt measurement (500 g ± 0.01 g)
- o Bleach

2.

- **O** Rockwool cubes (2 x 1 m³ boxes)
- Seed germination trays (consumable)
- **O** Solution stock storage tanks (2 x 50 L tanks with spigot, PP)
- **O** Solution transfer tank (1 x 200 L tank, PP)
- Submersible pump (5 L min⁻¹ or greater)
- **O** Cutting board, knife, scissors, paper towels, paper bags
- o Plastic vials
- o Coffee grinder for tissue sample preparation
- Additional Analytical Equipment, as required:
 - o Li-COR Leaf Area Analyzer
 - O HPLC for hydroponics sample analysis (ions; F. Cl. NO₂, NO₃, PO₄, SO₄, Na, NH₄, K, Mg, Ca)

1.1. Solution Preparation

The chamber design allows for the use of a common nutrient solution (single reservoir) feeding all age classes of the crop in staged culture and all trays in batch culture. Studies using the nutrient solution formulation tabled below have been successfully used in staged and batch culture of beet and lettuce with periodic solution dumping. For the crop test, solution dumping will not be performed. The EC/pH control system will be enabled.

Table 5.2-15-1. Typical hydroponics nutrient solution used in HPC studies.

Component	Mol. Wt. (g)	Feed Strength (mM)
Stock A		
Ca(NO ₃) ₂ ·4H ₂ O	236.16	3.62
Stock B		
MgSO ₄ ·7H ₂ O	246.48	1

KNO ₃	101.1	5
NH ₄ H ₂ PO ₄	115.08	1.5
(NH ₄) ₂ SO ₄	132	1
Micronutrients		
FeCl₃ (DTPA)	162.20	0.025
H ₃ BO ₄	61.83	0.02
MnSO ₄ ·H ₂ O	169.01	0.005
ZnSO ₄ ·7H ₂ O	289.54	0.0035
CuSO₄·5H₂O	249.68	0.0008
H ₂ MoO ₄ (85%MoO3)	161.97	0.0005

The nutrient solution is made using concentrated stocks solutions. Once made, the nutrient solution is pumped into the main NDS tank and the irrigation system is started once the seedlings have been added to the growing trays.

1.2. Germination, Emergence, Thinning, Planting

Lettuce seeds will be subjected to a period of vernalization at cool (4°C) temperatures and high humidity in a paper lined Petri dish for a period of 72 hrs. Seeds are then transferred to Rockwool cubes rinsed with distilled water and placed under a clear cover beneath a suitable lighting source. The seeds are watered regularly (daily) with a diluted feed stock solution. After emergence, plants are thinned from the Rockwool to the desired planting number and the clear cover is removed. Rockwool and trays for germination may be readily obtained from local greenhouse suppliers. Fourteen days after planting, the seedlings are transferred to larger Rockwool blocks to be placed in the HPC1 growing trays, and moved into the chamber.

As this is a batch culture test, all troughs will be loaded into the chamber at one time. Once in position, the irrigation system is activated with the irrigation by-pass line operational. Samples of hydroponic solution should be taken at 5 day intervals.

1.3. Crop growth

Once the chamber is loaded, the controller is programmed to provide the following environment conditions for the entire period of crop grow-out (20 days)

 CO_2 Demand – 1000 ppm Temperature – 26/20 ° C (day/night) VPD – 9.0 EC – 2 mS pH high/low 6.3/5.7 O_2 – not controlled Light Intensity – All lights operational

1.4. Analysis of Net Carbon Exchange Rate and Assessment of Model Performance

The computer controller of the SEC-2 chambers maintains CO_2 concentrations at demand levels during day-light hours through the automated injection of pure CO_2 through a mass flow controller. The amount of time the mass flow controller is on, recorded by the Argus control system as seconds of injection time, is used to estimate net carbon gain of the developing crop stand.

1.5. Harvest

- 1. At crop maturity (34 days after planting), each individual plant is harvested and separated into edible and inedible fractions. Fresh weight for leaf material is recorded manually.
- 2. Leaf material and roots in preweighted Rockwool cubes are placed in paper bags in a drying oven for approximately 14 days at 60° C.
- 3. Dry weights of all plant parts is recorded.
- 4. Tissue samples are to be collected for % C determination
- 5. A carbon balance is determined from the NCER estimates obtained above, the dried biomass and measured carbon content

2. Procedures for Temperature and Light Intensity Mapping in the Chamber Growing Volume

2.1.1. Spatial Characterization in Light Intensity

The spatial characterization in light testing is done to map the light intensity over the three dimensional space of the growing volume.

- 1. Three PAR sensors are mounted on the support rack (supplied) which is rested on the growing trays. Light intensity readings are taken with the three lamp strings on at the first position of the tray.
- 2. After equilibration, the PAR sensors are moved along the length of the chamber to the next tray position.
- 3. Readings from each of the PAR sensors in their new position are recorded.
- 4. This process is repeated until measurements have been taken from all tray positions.
- 5. The height of the mounting rack for the sensors is adjusted to yield a two dimensional light map at the new distance from the glass roof. The process above is repeated (20 observations corresponding to centre of tray positions).

- 6. The rack is adjusted again for a third and final map at a new height.
- 7. All of the above processes are repeated for all combinations of lamp string operations.
- 8. Plots of light intensity in two dimensional space for the three heights are made for all combinations of lamp string operation

2.1.2. Spatial Characterization in Temperature

- 1. The existing internal temperature sensors (3 fixed, 6 moveable) are arranged in an appropriate grid pattern throughout the chamber growth area.
- 2. The chamber is sealed and left to equilibrate at a set temperature.
- 3. The temperature setpoint is changed and the control system records the temperatures as they change until they once again equilibrate.
- 4. A higher resolution would require the use of externally read sensors.

3. **Procedures for Calibration of the VFD and Blower Speed**

1. With the air flow sensor in position and reading flow in m/s, the VFD is set sequentially to 0 Hz to 50Hz in 10Hz increments and air flow/speed measurements are recorded for each increment. A plot of air speed against VFD setting is then made to generate the calibration curve. This result may be useful in advanced thermal control of the chamber.