

Food quality and safety activities in the EDEN ISS project Pre mission results.

Alberto Battistelli, Simona Proietti, Stefano Moscatello,

CNR- IBAF- Institute of Agro-environmental and Forest Biology, Via G. Marconi, 2 05010 Porano (TR) Italy.

Filomena Nazzaro, Florinda Fratianni,

CNR -ISA- Institute of Food Science, Via Roma, 64, 83100 Avellino Italy.

Raffaele Coppola

DIAAA, University of Molise, Via de Sanctis snc, 86100, Campobasso, Italy

Lorraine Richardson, Sarah McMahon, Siobhan Moane, Tracey Larkin, Peter Downey, Michelle McKeon-Bennett.

LIT- Limerick Institute of Technology, Moylish Park, Limerick, Ireland.

Current and future ways to Closed Life Support Systems – Joint Agrospace-MELISSA Workshop

The Project

2015-2018

http://eden-iss.net/

COMPET 7 - 2014: Space exploration - Life support

- 14.5 Points out of 15
- EU Contribution ~4.5 M€ (plus partner contributions; total over 5.5 M€)
- 13 Partners from Industry, Academia and research Institutes
- · Germany, Ireland, Italy, Netherlands, Sweden, Austria, and Canada

Current and future ways to Closed Life Support Systems – Joint Agrospace-MELISSA Workshop

TBAF

Current and future ways to Closed Life Support Systems – Joint Agrospace-MELISSA Workshop

Food quality and safety activities. We want to produce good, nutritious and safe food to fulfill astronauts needs

Current and future ways to Closed Life Support Systems – Joint Agrospace-MELISSA Workshop

Overall Work Plan

- Preparative Stage
 - Procedures
 - Plant growth under Controlled Environmental Conditions to modulate Quality Parameters (Quality Driving Attributes)
 - Sample selected species to develop and test analysis protocols and data output
 - Destructive Quality Analysis Protocols
 - Organoleptic Analysis Protocols
 - Food Safety Protocols
 - Storage Protocols (Analytical and Organoleptic Samples)
 - Post Harvest Procedures
 - Non-destructive Quality Assessment Protocols
 - Food Safety and Processing Manual (D4.3)
 - Test Campaign (MTF)
 - Organoleptic Crew Surveys
 - Non-destructive Quality and Safety Assessment (Toolbox)
 - Post-harvest Procedures
 - Sample harvesting and storage for post-mission analysis
 - Post-mission analysis and data processing
 - Chemical Composition, Microbial & Organoleptic Analysis
 - Food Safety and Processing Results (D5.7)
 - Palatability & Contamination Report (D5.8)

Preparative Stage

Procedures

SAMPLING: Sub sampling 100 g of produce

Current and future ways to Closed Life Support Systems – Joint Agrospace-MELISSA Workshop

EDEN ISS

EDEN ISS-CNR-LIT-WP4.3-D4.3-Food Quality and Safety-v1.0

SOP 011 - Nitrate Ion Meter

Preparative Stage Procedures

Nitrate measurement at the NMIII

	Identification Number:Revision Number:S.O.P. 0112.0Equipment Model:Serial Number:Horiba LAQUA Nitrate NO3- Meter (B-743)Serial Number:					
EDEN ISS	Document Owner: Limerick Institute of Technology/	EDEN-ISS				
	Document Status: Approved	No. of Pages:	Language: English			
	Document Type: Standard Operating Procedure (Internal)	Contact/Creator: Ms. Michelle McK	eon-Bennett			

Revision History

Revision No.	Date	Comments
1.0	25 th April 2017	Document creationEstablishment of procedure
2.0	29 th May 2017	 Addition of Control Record Procedure update

National Research Council of Italy

Compounds relevant for the nutritional QUALITY of produce.

Current and future ways to Closed Life Support Systems – Joint Agrospace-MELISSA Workshop

Nitrate ion content	NO ₃	
Chlorophylls	CHL	
Total carotenoids	TCARO	
Total proteins	TPROT	
Carotenoid	SCARO	
Soluble proteins	SDROT	
Accordic acid		
ASCOLDIC ACIU	ASCO	
Non-Structural		
	NEC	
(Glucose fructose,	NSC	
sucrose and		
Ach contont	лсц	
Asir content		
Fructans Oliga, Envetacidad	FRUCS	
Oligo-Fructosides	FOS	
Mineral	MIN	
composition		
Antocyanidin	ANTO	
Organic acid	ORGA	
Oxalic Acid	ΟΧΑ	
Lycopene	LYCO	
Total polyphenols	TPOLY	
Polyphenols	SPOLY	
Carotenoid identification	SCARO	
Total Glucosinolate	TGLUC	
Glucosinolate		
identification	SGLUC	
Antioxidant		
Capacity	ORAC	
Antioxidant	CANTUG	
identification	SANIHO	
Oils/Fats	FATS	
Hardiness	PTRO	
Soluble solids	BRIX	

Type of analysis

Dry matter

percentage

Current and future ways to Closed Life Support Systems – Joint Agrospace-MELISSA Workshop

TBAF

C National Research Council of Italy

Species	Cultivar /type	N° of harvest sampled	N° samples per harvest	Type of sample	Tissue (and total amount of samples to transport in g)	stabilisati	on Sto	torage	Analysis type	Site of analysis
Lactuca sativa L.	TBD	3	4	Fresh material (FM)	Leaves (100 g)	Freezi	ing	-20°C	CHL.; TCARO; DM; TPROT.; SPROT NSC; ASH; FRUCS; FOS OXA ASCO FIBRE	CNR IBAF
									MIN	LIT
									NO ₃	NM-III
Lactuca sativa L.	TBD	1	5	FM	Roots (100 g)	Freezing		-20°C	TCARO; DM; TPROT.; SPROT NSC; ASH; FRUCS; FOS OXA ASCO	LIT
									NO ₃	NM-III
Eruca sativa Mill.	Cultivated	3	4	FM	Leaves (100g)	Freezing		-20°C	CHL.; TCARO; SCARO; ASCO; DM; TPROT.; SPROT NSC; ASH TPOLY FIBRE	CNR IBAF LIT
									TGLUC; SGLUC; ORAC; SANTHO MIN SPOLY	LIT CNR

Type of analysis	CODE
Dry matter	DM49/
percentage	DIVI 76
Nitrate ion content	NO ₃
Chlorophylls	CHL
Total carotenoids	TCARO
Total proteins	TPROT
Carotenoid	COADO
identification	SCARU
Soluble proteins	SPROT
Ascorbic acid	ASCO
Non-structural	
carbohydrate	
(Glucose fructose,	NSC
sucrose and	
others)	
Ash content	ASH
Fructans	FRUCS
Oligo-Fructosides	FOS
Mineral	MIN
composition	
Antocyanidin	ANTO
Organic acid	ORGA
Oxalic Acid	OXA
Lycopene	LYCO
Total polyphenols	TPOLY
Polyphenols	SPOLY
Carotenoid	SCARO
identification	JCARU
Total Glucosinolate	TGLUC
Glucosinolate	SCLUC
identification	SGLUC
Antioxidant	OPAC
Capacity	UNAC
Antioxidant	SANTHO
identification	SANTHU
Oils/Fats	FATS
Hardiness	PTRO
Soluble solids	BRIX

Current and future ways to Closed Life Support Systems – Joint Agrospace-MELISSA Workshop

We defined the

Quality driving attributes

(QDA) as those nutritional and nutraceutical quality attributes that are the most relevant for each species, for acceptance by the NM-III crew, by astronauts and for general consumers....

Current and future ways to Closed Life Support Systems – Joint Agrospace-MELISSA Workshop

We selected up to three QDA for each of the adopted species and varieties

Species	Cultivar /type	QDA 1	QDA 2	QDA 3	Comments
Lactuca sativa L.	TBD	NO ₃	ΟΧΑ	FOS	Nitrate levels are monitored. Oxalic acid should be low due to threat to human health.
Eruca sativa Mill.	Cultivated	ASCO	TGLUC	FIBRE	Methods to quantify polymeric composition of rocket produce were tested. Original data are available. Glucosinolates method development is complete.
Raphanus sativus L.	TBD	TGLUC	ANTIOX	NSC	Nitrate levels are monitored.

Current and future ways to Closed Life Support Systems – Joint Agrospace-MELISSA Workshop

National Research Council of Italy

Upgraded in-house growth facilities for pre-mission activity

Modelling light intensity and distribution

E

Simulation – 2 lamps Narrow optic

Two lamps with the narrow optic provide an even distribution at both 140cm and 70cm. The separation of the lamps could likely be increased a more to further improve uniformity.

Intensities over 700umol/m2/s at floor level and over 1400umol/m2/s at 70cm can be expected.

DC	1047	1112	1173	1264	1354	1398	1421	1422	1399	1384	1260	1165	1100	3031
Ř	1032	1116	1204	1299	1312	1441	1460	1468	1441	1381	1295	1197	1105	1016
	1022	1115	1225	1336	1426	1482	1502	1502	1481	1424	1332	1220	1106	1008
	1014	1117	1238	1362	1463	1511	1525	1525	1510	1462	1360	1235	1112	1005
	1008	1114	1236	1361	2443	1511	1525	1524	1510	1462	1341	3236	1115	1012
	1010	1108	1221	1334	1424	1481	1502	1501	1481	1424	1334	1224	1134	1023
	1010	1107	1199	1297	1301	1440	3.468	1467	1440	1300	3296	1203	1115	2022
	1034	1102	1167	1261	3355	1399	1422	1423	1397	1354	1263	1173	1112	1048
E	6 03	629	651	\$674	692	102	706	704	699	689	668	\$42	614	369
140	626	658	685	107	•725	736	742	741	7 35	722	704	679	6 48	398
	651	680	708	731	749	761	766	766	760	747	729	705	676	643
	166	692	719	745	262	773	779	778	***	761	745	718	691	\$62
	* 663	* 692	\$719	50	162	973	779	*775	1714	762	743	919	691	*63
	645	678	106	730	749	761	767	γ_{CI}	761	750	731	108	680	651
	\$01	\$51	601	706	724	736	743	743	* 737	726	108	105	658	\$26
		Sec. 1		Sec.	Sec. 1		100			•	14000	10221	100	

CELLS M12 & EGC M48 Growth Chambers

Testing light intensity and distribution

	Licor PA	Licor PAR (μ mol quanta m ⁻² s ⁻¹) [80 cm from lamp]						
LED setting led	450+66 0 +5700k	5700 K	660	450	660 + 450			
1000	825	200	570	70	633			
800	711	177	481	60	538			
600	584	147	392	51	440			
400	451	115	295	41	334			
200	315	80	200	35	234			

Current and future ways to Closed Life Support Systems – Joint Agrospace-MELISSA Workshop

Started the Pre-Mission activities with in-house experiments

- Food Quality-composition
- Food Safety-composition
- Food Quality-organoleptic
- Food safety-microbial contamination

OUR DRIVING IDEA:

to increase the efficiency of agriculture we need to maximize the positive sides of the plant-environment interaction while avoiding the negative ones.

This can be done by controlling the plant growth environment (and using renewable energy)

Current and future ways to Closed Life Support Systems – Joint Agrospace-MELISSA Workshop

Pre-Mission activities

Food Quality-composition

Current and future ways to Closed Life Support Systems – Joint Agrospace-MELISSA Workshop

ENERGY: A KEY ASPECT

Università degli Studi

DEL MOLISE

Light quantity and lamp setting

Photoperiod and	Treatment	Blue	Red	FR	Cool white
PPFD value		(450nm)	(660nm)	(730nm)	5700K
12h/12h	A 12h	1 5 0/	710/	20/	1 70/
PPFD= 600 μmol m ⁻² s ⁻¹	A-1211	13%	/ 1 /0	Ζ70	1270
24h (CN)		0	0	0	100%
PPFD= 300 μmol m ⁻² s ⁻¹	D-CL	0	0	0	10070
24h (CN)		270/	720/	0	0
PPFD= 300 μmol m ⁻² s ⁻¹	C-CL	21/0	13/0	0	0

Cool white lamps 5700K have 25% Blue 450 nm; 45% Green ; 563 nm 27% Red 660 nm 3% Far-Red730 nm.

ENERGY AS A KEY ASPECT: growth analysis parameters of *E. sativa* Mill. as affected by different light treatments.

Università degli Studi del Molise

Measured Variables
Total fresh matter (g)
Total dry matter (g)
HI%
Leaf fresh weight (g)
Leaf dry weight (g)
DM%
SLDW (g/m ²)
Root fresh weight (g)
Root dry weight (g)
DM%

RESULTS:

- Highest total production in B-CL (+45%)
- Lowest Dry matter production in A-12h
- Highest HI in B-CL
- Highest edible production in B-CL
- Highest DM% and SLDW in C-CL
- Highest root amount in C-CL

Practical Indications:

- Grow under 24 h light regime (if no flowering occurs)
- Use a substantial amount of green light

Questions for future research:

• Why is the "neglected" green light so beneficial?

ENERGY AS A KEY ASPECT: leaf tissue pigment concentrations on a fresh matter basis (mg 100 g FM-1) of Eruca sativa Mill. as affected by different light treatments.

Measured Variables
Chl a
Chl b
Chl a/b
Total Chl (a+b)
Carotenoids
Lutein
Neoxanthin
Violaxanthin

RESULTS:

- All parameters changed with the light treatment
- C-CL had the lowest Chl content
- Lutein differences did not match those of chlorophyll

Practical Indications:

• Light regime can affect strongly pigment composition

Questions for future research:

- Optimize light recipe for specific pigment accumulation
- How to maximize lutein content?

National Research Council of Italy

ENERGY AS A KEY ASPECT: Chemical composition of cell wall of E. sativa Mill. as affected by different light treatments.

Measured Variables
Ash
Total extractives
Total lignin
Monomers of insoluble polysaccharides
Glucose
Fucose
Arabinose
Galactose
Xylose
Mannose
Rhamnose
Galacturonic acid

RESULTS:

- High extractives in 24h treatments
- Significant changes in lignin content not due to changes in extractives.
- Relatively low xylose amount indicating low amount of hemicelluloses
- Large amount of galacturonic acid (and rhamnose) indicating abundance of pectin.

Practical Indications:

• 35-45% of rocket dry weight can be due to compounds related to dietary fibre.

Questions for future research:

- Effect of light regime on lignin biosynthesis
- Nutraceutical value of pectin (and hemicelluloses), effect on the gut microbiome.
- Effect of the growth environment on the dietary fiber components of leafy vegetables

Food quality: quality test on produce grown inside the FEG during the test phase in Bremen

Non Structural Carbohydrate (NSC) content in different plant species grown in the FEG during the test phase in Bremen. Data are reported as mean ± s.e. (mg · g dry weight -1)								
Species	Galactose	Glucose	Fructose	Sucrose	RFO (Raf+Stac)	Starch	Total Soluble	Total NSC
Rocket	-	16,1 ± 1,8	6,5 ± 0,7	2,5 ± 0,5	-	12,2 ± 5,6	25,1 ± 2,6	37,3 ± 6,9
Red Giant		30,7 ± 1,9	12,0 ± 0,7	2,4 ± 1,5		23,6 ± 5,5	45,1 ± 2,8	68,3 ± 11,8
Basil	2,5 ± 0,1	8,5 ± 1,9	6,4 ± 1,3	$0,4 \pm 0,1$	(0,7 ± 0,1)	48,7 ± 24,5	18,5 ± 3,4	67,2 ± 8,6
Mini- Cucumber	0,6 ± 0,04	145,9 ± 4,6	145,7 ± 10,6	-	-	7,2 ± 1,9	292,1 ± 13,7	282,1 ± 13,7
Mini- Pepper	0,7 ± 0,2	157,1 ± 14,7	154,0 ± 9,5	54,8 ± 31,1	-	155,1 ± 28,3	366,6 ± 16,1	521,6 ± 16,1

Current and future ways to Closed Life Support Systems – Joint Agrospace-MELISSA Workshop

Pre-Mission activities

• Food Safety-composition

Current and future ways to Closed Life Support Systems – Joint Agrospace-MELISSA Workshop

ENERGY AS A KEY ASPECT: Inorganic anion content (ppm) and organic acid (mg 100 g FW-1) in E. sativa Mill. leaves as affected by different light treatments.

Current and future ways to Closed Life Support Systems – Joint Agrospace-MELISSA Workshop

RESULTS:

- High content of nitrate in A-12h
- No significant changes in other anions
- Indication of increase of Malate under 24h light

Practical Indications:

- The crew will be allowed to consume Rocket since nitrate in leaves grown under fully controlled environment was lower than the legal limits for commercialization.
- Long photoperiod might help reducing nitrate content more than high light intensity with short photoperiod.

Questions for future research:

- Is nitrate bad or good?
- Light action spectrum on Nitrate reduction (Nitrate reductase activation)

LED TECHNOLOGY- NEGATIVE QUALITY ASPECTS

Effect of the light spectrum on nitrate

	Blue (400-500nm)	Green (500-600 nm)	Red (600-700 nm)	
	(%)	(%)	(%)	
Reference	17	12	72	
50% blue	50	12	38	

Nitrate content in Red Mustard and Rocket leaves grown under 17% or 50% LED Blue light.

RESULTS:

- Much higher Nitrate content in Red Mustard than in Rocket
- Opposite effect of high blue on two different species, it decreased Nitrate in Red Mustard and increases it in Rocket.

Practical Indications:

• Nitrate in Red Mustard leaves grown under fully controlled environment was higher than the legal limits for commercialization (of salad). It would be not safe for the crew to consume.

Questions for future research:

- Nitrate use efficiency under Controlled environment conditions
- Light action spectrum on Nitrate reduction (Nitrate reductase activation)

Pre-Mission activities

• Food Quality organoleptic

Current and future ways to Closed Life Support Systems – Joint Agrospace-MELISSA Workshop

Pre-Mission activities-Food Quality-organoleptic

Current and future ways to Closed Life Support Systems – Joint Agrospace-MELISSA Workshop

RESULTS:

- Size and color were different in Shop and CELLS radish
- Crispness was insufficient in CELL radish
- CELLS radish was too bitter

Practical Indications:

 Variety selection to meet crew expectation in terms of taste and appearance

Questions for future research:

- Evaluate the role of growth light intensity and spectrum on crispness (osmotics and cell wall composition)
- Evaluate the role of growth light intensity and spectrum on tissue composition (bitterness, glucosinolates)

Pre-Mission activities

Food Safety-microbial contamination

Current and future ways to Closed Life Support Systems – Joint Agrospace-MELISSA Workshop

Pre-Mission activities-Food safety-microbial contamination

	V1 (SD)	V2 (SD)				
Salmonella spp	0 (0)	0				
Enterococcus faecalis	65.8 (0.57)	13.15 (0.57)				
Total coliforms	0 (0)	0(0)				
Proteus vulgaris	106.5 (1.57)	0 (0)				
Listeria	0 (0)	0 (0)				
St aureus	71.35 (3.05)	160 (17.3)				
E coli	0(0)	0(0)				
S.thyphi	0(0)	0 (0)				
Total count	402 (4.61)	410 (3.21)				
Cfu present in 5 grams of sample from V1 and V2 cassettes						
The experiments were performed in triplicate; the data are						
expressed as average (±Standard Deviation)						

RESULTS:

- Only for three of the tested species there were counts
- Specific species and total counts were not elevated, still need to be considered as a potential treat for consumers

Practical Indications:

- Take care of growing environment contamination
- Sanitization is necessary

Questions for future research:

- Evaluate sources of contamination in controlled environments
- Investigate the interaction of plant and pathogenic microorganisms

Pre-Mission activities-Food safety-microbial contamination

Rocket from local market

Sample washed with water

Sample washed with water and treated for 15' with sodium bicarbonate

Sample washed with water and treated for 15' with sodium hypochlorite («Amuchina») **RESULTS:**

- Presence of potential pathogens Is common in market produce
- Potential pathogens can be easely removd with commercial producs

Practical Indications:

Sanitization necessary

Questions for future research:

- Evaluate sources of contamination in controlled environments
- Investigate the interaction of plant and pathogenic microorganisms

What to learn for Earth agriculture?

To increase the efficiency of agriculture we need to maximize the positive sides of the plantenvironment interaction while avoiding the negative ones.

Controlling the environmental factors we can force plant metabolism to produce useful compounds and to decrease negative compound in plant food, this is a new frontier of agriculture and nutrition

In practice this can be done by controlling the plant growth environment, INTRODUCING VARIABLE DEGREES OF ENVIRONMENTAL CONTROL, UPGRADING EXISTING GREENHOUSES, INTRODUCING NEW ENVIRONMENTAL CONTROL SYSTEMS AND SUB-SYSTEMS IN TRADITIONAL AND NEW AGRICULTURE SYSTEMS.

On Earth agriculture technology should be coupled to the use of RENEWABLE ENERGY, to build modern and SUSTAINABLE agricultural systems.

Current and future ways to Closed Life Support Systems – Joint Agrospace-MELISSA Workshop

What to learn for plant science?

New controlled environment technologies allow testing new growing conditions in terms of single and combined environmental factors, there are important tools for the advancement of plant sciences.

Due the variability of the genetic back ground of plant species and to the interactions between pants and several environmental parameters it is difficult to extrapolate general rules. NOTHING IS SMPLE WITH PLANTS AND ENVIRONMENT INTERACTION

The study of the interactions between plants ad microorganism might produce unexpected and important results in the area of plant production and protection systems and or food safety aspects.

Young, motivated scientist are needed for the academia and to transfer academic knowledge into new agricultural systems and the food industry.

Current and future ways to Closed Life Support Systems – Joint Agrospace-MELISSA Workshop

What about the EDEN ISS project?

THE BEST IS YET TO COME!

Current and future ways to Closed Life Support Systems – Joint Agrospace-MELISSA Workshop