1st AgroSpace-MELiSSA Workshop

Characterization of the process of household waste processing in the optimized wet combustion reactor

Trifonov S.V.*, Morozov Ye.A., and Kozlova T.A.

Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Russian Federation, 660036, Akademgorodok st., 50/50 *+79039212607, trifonov_sergei@inbox.ru

This study was carried out in the IBP SB RAS and supported by the grant of the Russian Science Foundation (Project No. 17-74-10147)

Rome, 2018

Fundamental arrangement of the reactor

Fig. 1. Fundamental arrangement of the reactor: 1 - lid and aperture for wastes inserting; 2 - confluent valve; 3 - water cooler; 4 - electrodes; 5 - device to bowl down the foam; 6 - volume for foam excesses taking; 7 - additional volume for avoiding acid and mineralized solution mixing; 8 - volume for NH₃ fixation.

Introduction

Household waste:

 cotton waste - cellulose towels, gauze, and medical cotton (1:1:1) – 162 g/day/person

graywater - washing off soapy water after dirty dishes – 3
 l/day/person

<u>Purpose</u>: to find conditions optimal for wet combustion of household waste and estimate process characteristics (duration, energy, etc.)

Requirements to the process: minimal H2O2 consumption, energy consumption, minimal duration of process, acceptable degree of oxidation (> 60 %), no trace amount of H2O2 in products.

Method

Step I

Variants of household waste wet combustion:

- 1) combustion of cotton waste;
- 2) combustion of graywater;
- 3) combustion of graywater & cotton waste mixture.
- various amount of H2O2;
- combustion with HNO3 (direct aqueous solvent of cellulose);

 combustion with urine + H2O2 (urea is reactive aqueous solvent of cellulose);

- combustion with human metabolites + H2O2;
- combustion with different electric current voltages

Method Step II

Variants of configurations for the wet combustion reactor:

Fig. 2. Horizontal orientation

1) bar electrodes; 2) flat electrodes; 3) confluent valve; 4) aperture for wastes inserting; 5) aperture for connection with water cooler; 6) aperture for connection with volume for foam excesses taking

- Separate graywater oxidation has no perspectives
- H2O2 (36 %) consumption 16 ml/g cotton waste, 50 ml/l graywater

Table 1. Comparison of "best" variants.

Variant	Durati on, h	Energy cosumption, kW·h/I	Total degree of oxidation, %	Cotton degree oxidation, %
"+HNO3"	7.3	5	65-79	70
"cotton + urine"	14.3	7	96	69
"cotton + graywater + urine"	8.3	3	61.5	72

Table 2. Mineral composition of wet combustion treatment (cotton waste + urine).

	NH4+	Ntotal	NO3-	К	Na	Са	Mg	Р	S	Fe
Solution,	(/////	//////	l III							
mg/l	505	1658	133	365	736	9,80	6,67	96	131	0,11
Sediment,	///// /	(11111)	hhh							11/1/
%	//////	1.46	11114	1.35	2,58	0,52	0,20	0,86	0,47	0,02

Combustion in reactors of different configuration:

Table 3. Efficiency of processing of sanitary and household cottonwastes.

Reactor	Duration, h	Energy	Energy	Degree of
config.		consumptio	consumptio	oxidation, %
	IHHIIIII	n, W∙h/l	n, W·h/g*	
"Horizontal, bar electrodes"	11	2300	115	51
"Horizontal, flat electrodes"	5.5	1720	86	47
"Vertical, bar electrodes"	13	2950	150	61
"Vertical, flat electrodes"	11.5	413	21	66

Table 2. Mineral composition of wet combustion treatment (cotton waste + graywater + urine).

///////////////////////////////////////	NH4+	Ntotal	NO3-	К	Na	Са	Mg	Р	S	Fe
Solution,	510	4735	88							
mg/l	(/////	//////	MM	346,2	450	5,13	7,028	93,06	162,2	0,092
Sediment,	() () ,		htth							
%	//////	3,706	-	0,56	6,83	0,26	0,04	0,27	0,26	0,01

Table 4. Volume and composition of released gases.

Components of	Reactor orientation				
released gases	horizontal	vertical			
O2, %	86	87,5			
CO2, %	12,3	10,6			
H2, %	0,4	0,6			
NH3, %	0,03	0,03			
NO, ppb	40	40			
NO2, ppb	60	60			
CO, %	1.3	1.3			
Volume, I (from 1 I of solution)	114	128			

Next efforts

Using the reactors products in plant growing:

 Checking the possibility of mineralized solution usage in plant growing on neutral substrate;

 Checking the possibility of sediment usage in plant growing on soil-like substrate