

Continuous and controlled oxygen production in an air-lift photobioreactor to sustain the activity of an animal crew

L. ALEMANY, E. PEIRO, C.ARNAU, D. GARCÍA, F. GÒDIA

MELiSSA Pilot Plant – Claude Chipaux Laboratory, Universitat Autònoma de Barcelona, Spain
L. POUGHON, C.G., DUSSAP, Université Clermont Auvergne, Clermont-Ferrand, France
O. GERBI, Sherpa Engineering, La Garenne-Colombes, France
B. LAMAZE, CH. LASSEUR, ESA-ESTEC, Noordwijk, The Netherlands

1st Joint Agrospace- MELiSSA Workshop, Rome, May 16-18, 2018

Contents:

- Introduction
- □ Integration WP1. Experimental results
- □ WP1 model. Rationale
- □ WP1 model. Results

Introduction

The MELiSSA Concept: engineering a closed ecosystem

MELiSSA approach is to perform the most relevant biological functions of an ecosystem in individual compartments (bioreactors and higher plant chambers), in continuous and controlled operation

The MELiSSA Pilot Plant: technology demonstration and integration

Main objectives

Integration and demonstration of the MELiSSA concept at pilot scale

Technology demonstration:

In ground conditions

With an animal crew

With industry standards

Long-term continuous operation

Modelling and Control

Production of Oxygen: Equivalent to a one person respiration Production of food: At least 20% of a person requirements

Layout (214 m²)

WP1 Integration. Experimental results

Integration Strategy: C. III / C. IVa / C. V

The MELiSSA Pilot Plant (MPP) esa UAB Universitat Autònoma de Barcelona COMPARTMENT IVb IVa V Function in the loop **Biological component** Technology O₂ Feed **Wastes** Laboratory Wistar rats **C.** V Max. leak 0,029% vol./h (1 human ~ 60 rats) fatty acids

WP1 Integration. Test conditions

COMPARTMENT IVa SUBSYSTEM		
Temperature	36°C	
Pressure	1.08 atm	
рН	9.4	
k _L a	11 h ⁻¹	
Reactor characteristic length	0,076 m	
Reactor volume	83 L	
Reactor gas volume fraction	1%	
Liquid flow rate	0.75 L/h	
Gas flow rate	168 L/h	

COMPARTMENT V SUBSYSTEM	
Volume	1600 L
Temperature	22 °C
Pressure	1.002 bar
Number of rats	3

WP1 integration. Main objectives

- □ Continuous gas phase connection CIVa-CV at different conditions in CV (set points of % O₂)
- CIVa illumination adjusted by the control system to produce the oxygen necessary to maintain setpoint of O₂ in CV, according to the knowledge model linking O₂ production and illumination
- Building a mathematical model describing the interconnection of the two compartiments, necessary for future integration steps

WP1 integration. Experimental results. CIVa + CV sequential test

Oxygen – Light control system

Light and Oxygen evolution in CIVa and CV compartments

The system response to CV oxygen set point changes is consistent in the range tested (O2 controlled at SP +/- 0.05%)

WP1 integration. Experimental results. **CIVa + CV sequential test**

C5 (%)

03

Light and biomass evolution (dry weight and optical density)

Biomass concentration during the test was maintained in the same range order.

Oxygen and carbon dioxide evolution (gas composition)

Carbon dioxide concentration in C.V compartment was quite stable and lower than the toxic limit ($20 \cdot 10^3$ ppm).

WP1 MODEL. RATIONALE

System Modelization Assumptions

C. IVa Compartment

C. V Compartment

Hydrodynamic studies results

Photobioreactor discretization proposal

Cesa

B

Universitat Autònoma de Barcelona

The proposed model should describe the slightly plug flow behavior while at the same time allowing for the perfectly mixed behavior of the whole system.

System Model

C. IVa Compartment

C. V Compartment

Model equations (liquid and gas phases)

DISSOLVED OXYGEN EQUATION

System modelization Assumptions

C. IVa Compartment

C. V Compartment

Rats consumption/production rates

Fig 3. Oxygen consumption and carbon dioxide production by the rats (mock crew) in animal compartment at different oxygen set points. Blue 19% oxygen (n=2). Orange 20% oxygen (n=3), Yellow 21% oxygen (n=5), Purple 22% oxygen (n=1).

Crew compartment modellization

esa

RQ= 0,97 coherent with diet specifications

Universitat Autònoma de Barcelor

WP1 MODEL. RESULTS

System modelization. Results

Test 1 Test 2 (b) (a) 23 23 (%) u22 21 20 22 mm Uxygen 20 19 19 0 10 20 30 40 50 0 10 20 30 Time(days) Time (days) (c) (d) 6000 6000 Simulated Data 0005 (ppm) 0005 0005 0004 (bbm) 2000 2000 Experimental Data 0 -0 10 20 30 40 50 Ŭ0 10 20 30 Time(days) Time (days) (e) 300 300 Light (W/m2) 001 002 Light (W/m2) 00 00 0 0 0 10 20 30 40 50 0 10 20 30 Time(days) Time(days) Simulated Data Experimental Data

CIVa COMPARTMENT – GAS PHASE

Cesa UAB Universitat Autònoma de Barcelona

CV COMPARTMENT – GAS PHASE

System modelization. Results

CIVa COMPARTMENT – LIQUID PHASE

System modelization. Results

The proposed model is capable of describing the gas profiles in the riser that lead to specific gas-liquid mass transfer in each control volume.

The proposed model is able to describe the reactor macroscopic behavior as a perfectly mixed reactor with accuracy.

esa

R

Universitat Autònoma de Barcelona

RTD simulation

Acknowledgements

esa Universitat Autònoma de Barcelor

MELiSSA Partners

PASCAL

SOFT

🧩 vito

SHERDA

NEERING

GEPEB

MONS

ESA (EU), SCK/CEN (B), University of Ghent (B), VITO (B), Enginsoft (I) SHERPA Engineering (F), University Clermont Auvergne (University of Guelph (CND), Université Mons Hainaut (B) IP Star (NL), Univ. Napoli (I) Univ. Lausanne (CH)

Funding

ESA (several programs), several national delegations (Spain, Belgium, Canada, Italy. France, Norway) UAB SEIDI, CDTI, GdC

В Universitat Autònoma de Barcelona

IJ

SCK · CEN

TITIT

UNIVERSITEIT

PSTAR

FEDERICO II

Unil

UNIVERSITY *FGUELPH*

MELiSSA Pilot Plant Team

Francesc Gòdia **Beatriz Iribarren** Carolina Arnau Vanessa García Cynthia Munganga Raúl Moyano David García Daniela Emiliani

AB Universitat Autònoma de Barcelona

Laura Alemany **Justyna Barys** Jolien de Paeppe Carles Ciurans

MELISSA ESA-ESTEC

Christophe Lasseur **Brigitte Lamaze Christel Paillé Pierre Rebeyre**

