

Development of a New Experimental Crew Compartment

Adam Harper: Hosokawa Micron Ltd

Hosokawa Micron Ltd

Hosokawa Technologies

Impact Milling

Drying

Mixing

Air Classification

Screening

Agglomerating and Compacting

Sphericalization Pispersion

Nanotechnology and Particle Engineering

Hosokawa Containment

Drum Filling/Weighing

Laminar Flow Booths

Downflow Booths

Gloveboxes/Isolators

Process Integrated Gloveboxes

Development of Virtual Reality Techniques

Connected Systems

MELiSSA Crew Compartment

Development of a high containment isolator and gas loop system to provide a habitat for the development and demonstration of regenerative closed loop life support systems.

The 'Crew'

One human equivalent to 40-60 rats (depending on species) with respect to O_2 consumption and CO_2 production

Key Design Requirements

MELISSA

- 'GAS TIGHT' design
- Ensure comfort & welfare of the animals
- Good ergonomic design for laboratory personnel
- Connect isolator & gas loop to compartment IVa
- Ensure materials do not adversely affect experiment results
- Incorporate instrumentation for system control and recording of data
- Incorporate interlocks systems for safe operation
- Enable easy cleaning and decontamination

Preliminary Process Schematic (P&ID)

Early Concept Arrangements

Isolator Design Development

UAB

_

Ergonomic Testing

Wooden mock-up used for ergonomic testing and design verification

Smoke Testing

Smoke trials carried out using wooden mock-up to optimise airflow patterns

Smoke also injected directly into cages to evaluate the effectiveness of flushing contaminants

Gas Loop HVAC Design

System design allows control of the following parameters...

- Humidity
- Temperature
- Pressure
- Gas flow

All components designed to meet the same leak tightness criteria as the main isolator

During design the following influences on temperature and humidity levels were considered...

- Heat and moisture from animals
- Heat gain to/from room
- Heat gain from lights
- Heat gain from blower motors
- Temperature and moisture levels of gas returning from CIVa

Finalised System Design

P&ID Design Development

Gas Loop/Isolator Integration

Gas Tight Design

Maximum allowable gas leakage is 0.03% vol/hr (equivalent to 30 Pa or 0.3mbar in 1 hour)

(Derived from the maximum allowable dilution of the internal atmosphere during an experiment without having a significant adverse effect on the results)

Class	Leakage %vol/hr	Leakage Pa/hr	Application
-	0.03	30	MELiSSA CV Isolator
1	0.05	50	Nuclear Glovebox
2	0.25	250	High Containment Isolator
3	1	1000	Standard Containment Isolator
4	10	10,000	Low Containment Isolator

UAB

SHERPA

Gas-tight Components

System Pressure Management

- Pressures calculated for each part of the isolator and gas loop
- Internal system pressure kept positive but as low as possible to minimise leakage

Atmospheric Pressure Compensation

10

Changes in atmospheric pressure may cause under or over pressure in the system

Changes in differential pressure may cause:

- damage to system
- excessive leakage
- difficulty for the operator (pressurised gloves)

Gas pumped into buffer tank or released back into gas loop depending on atmospheric pressure measurements

Historical meteorological data shows potential atmospheric pressure Changes in Barcelona

Gas Analysis

Connections for calibration gas taken from compressed gas cylinders

Gas from the Gas Loop piped to the analyser

Animal Welfare

Comfort and welfare of the animals was a key design consideration

System design takes into account all relevant regulations with respect to animal welfare

The following aspects were considered...

- Temperature
- Humidity
- Removal of contaminants and noxious gasses
- Noise levels
- Light levels

Animal Experimentation

Ethics Committee on Animal Experimentation (CEEA)

Animal Welfare

Individual cage cooling fans

Dimmable, diffused cage lighting to avoid shocking the animals

Lux level testing in the wooden mock-up

Manufacture

Isolator chamber and airlock during fabrication

Assembly - Isolator

Assembly – Electrical and Control System

Assembly – Gas Loop Integration

Leak Testing

Phase 1:	Hosokawa Factory	Isolator	(Static Mode)
Phase 2:	Hosokawa Factory	Isolator and Gas Loop	(Static Mode)
Phase 3:	MELiSSA Pilot Plant	Isolator,	(Static Mode)
Phase 4:	MELiSSA Pilot Plant	Isolator and Gas Loop	(Static Mode)
Phase 5:	MELiSSA Pilot Plant	Isolator and Gas Loop	(Dynamic Mode)

Static mode leak testing proves the integrity of the system components, seals etc...

HOSOKAWA MICRON

Dynamic mode testing is carried out with full air recirculation and all connected equipment and systems in operation

Experimental results achieved during dynamic testing with a full 'crew' of animals will be presented by UAB

Leak Testing

Static leak testing carried out in generally in accordance with ISO 14644-7:2004 and ISO 10648-2:1994 using the 'pressure decay' method

Leak testing carried with both positive and negative internal pressures

Test Measurements:

- Chamber pressure (differential)
- Atmospheric pressure
- Internal temperature
- External temperature (ref. only)

UAB

- 0.1 mbar atmospheric change = 10 Pa internal pressure correction
- 0.01°C = 3.5 Pa internal pressure correction

Acceptance criteria: < 0.03% vol leakage/hr (30Pa/hr)

Arrival at UAB in Barcelona

Installation into MELiSSA Pilot Plant

Installation – Control System Wiring

Installation Complete

The Next Challenge: PaCMan

Plant Characterisation unit for closed life support system engineering, Manufacturing and testing

Some of the technology and solutions developed for the crew compartment are now being utilised for the PaCMan project.

A plant characterisation unit (PCU) will be designed and manufactured in conjunction with Enginsoft, Odys and Ciris for installation at the Universita degli Studi di Napoli Federico II

Rivington Road, Runcorn, WA7 3DS, UK +44 (0) 1928 755100 www.hosokawa.co.uk