Measuring the microbial biodiversity by single-cell analysis

Pieter Monsieurs, Ruben Props, Mohamed Mysara, Lieven Clement, Nico Boon, Natalie Leys

Belgian Nuclear Research Center

pmonsieu@sckcen.be

© SCK•CEN, 2018

Biodiversity

Functional Ecology

Functional Ecology 2015, 29, 1341-1349

doi: 10.1111/1365-2435.12445

Bacterial diversity amplifies nutrient-based plant-soil feedbacks

Shifts in microbial diversity through land use intensity as drivers of carbon mineralization in soil

Hot topic...

Vincent Tardy ^a, Aymé Spor ^a, Olivier Mathieu ^c, Jean Lévèque ^c, Sébastien Terrat ^b, Pierre Plassart ^a, Tiffanie Regnier ^a, Richard D. Bardgett ^d, Wim H. van der Putten ^e, ^f, Pier Paolo Roggero ^{g, h}, Giovanna Seddaiu ^h, Simonetta Bagella ^{h, i}, Philippe Lemanceau ^a, Lionel Ranjard ^{a, b}, Pierre-Alain Maron ^{a, b, *}

Testing biodiversity-ecosystem functioning relationship in the world's largest grassland: overview of the IMGRE project

Jianguo Wu · Shahid Naeem · James Elser · Yongfei Bai · Jianhui Huang · Le Kang · Qingmin Pan · Qibing Wang · Shuguang Hao · Xingguo Han

Marine biodiversity and ecosystem function relationships: The potential for practical monitoring applications

James Asa Strong ^{a, *}, Eider Andonegi ^b, Kemal Can Bizsel ^c, Roberto Danovaro ^d, Mike Elliott ^a, Anita Franco ^a, Esther Garces ^e, Sally Little ^a, Krysia Mazik ^a, Snejana Moncheva ^f, Nadia Papadopoulou ^g, Joana Patrício ^h, Ana M. Queirós ⁱ, Chris Smith ^g, Kremena Stefanova ^f, Oihana Solaun ^b

Assessing biodiversity

The microbial community

Flow Cytometry

Phenotypic markers

Rationale

"The community landscape represents a phenotypic state of the whole microbial community." N = 1000 Hypothetical cellular state Number of cells N = 500 N = 750 N = 10FL3 FL1

Rationale

Oligotrophic ecosystem model

© SCK•CEN, 2018

Both a dynamic and stable system

- 60 m³ h⁻¹ \rightarrow 4,000 m³ h⁻¹
- 15 °C → 30 °C
- 1 μ S cm⁻¹ \rightarrow 7 μ S cm⁻¹

Both a dynamic and stable system

Phenotypic diversity indicates dynamic changes

Other Ecosystems

Absolute quantification of OTUs

© SCK•CEN, 2018

Applications

✓ In-situ real-time monitoring of biodiversity

✓ Intelligent experimental design

When do I sample? And how frequently?

Complementary tool to sequencing platform

https://github.com/rprops/Phenoflow_package

Acknowledgements

Ir. Ruben Props

Dr. Mohamed Mysara Dr. Natalie Leys

Dr. Emma Hernandez Sanabria Prof. Dr. Nico Boon

Prof. Dr. Vincent Denef

University of Michigan