

Anti-Microbial Surface for Manned Space Flight Application: Highlight of the Matiss Project

<u>C. Thévenot</u>, L. Campagnolo (*MEDES for CADMOS*) S. Rouquette, P. Benarroche, S. Barde (*CADMOS-CNES*) L. Lemelle, C. Place, D. Letourneau, E. Mottin (*ENS de Lyon*) G. Nonglaton, P. Marcoux (*CEA Léti*) J. Teisseire, E. Garre (*Saint Gobain*)

MATISS, a Proxima's experiment

Physiology

Echo Everywear Perspectives

Material science Fluidics

Life support Aquapad Matiss

> Education Exo-ISS

Matiss Project Overview

- Matiss 1: Tech Demo during PROXIMA Mission
 > Evaluation of antimicrobial glass surfaces in µg
- Matiss 2 : Continue data collection and kinetic study
 > Visible light and XRF microscopy
- Roadmap for Matiss 3 : CNES CEA Léti R&T program
 - Applications for materials in space industry

Matiss 1 – Spatialization

- Objective
 - Long term exposure of antimicrobial glass surfaces to ISS aerosol
- Constraints
 - Safety requirements in particular for crew because of shatterable material utilization

- Result
 - Development and qualification of Matiss Sample Holder

5 © cnes

AgroSpace-MELiSSA workshop - Rome May 16-18 2018

Matiss 1 – Exposure in Columbus

- Locations selected in order to
 - > Have 3 holders in areas with a sufficient forced air flow through the sample holders
 - ➤ Have 1 holder in a location with stagnant air containing humidity
 - > Not interfere with any other payload or maintenance activities
- Support of Thales Alenia Space to identify locations
 - > 3D modelling of velocity field in Columbus module

Matiss 1 – Exposure in Columbus

7 © cnes

Matiss 1 - Timeline and constraints for return

- Upload on of 4 sample holders
 - Launched on Cygnus CRS OA-5 on 17th October 2016
 - Installed in 3 different locations in Columbus module on 21st November 2016
 - Exposed during **192 days** (installed just after T. Pesquet arrival and removed just before his departure from ISS)
 - Returned on Soyuz 49S on 2nd June 2017
 - Arrived at CADMOS for inspection on 8th June 2017
 - Shipped to PI laboratory and still under analysis
- Constraints
 - Shipment within 1 week to CADMOS to avoid non-controlled environmental conditions
 - No X-Ray scan during return ground/air transportation
 - Temperature range: 0°C < T < 50°C

Matiss 2 – Similarities and differences with Matiss 1

- Similarities with Matiss 1
 - Use of identical hardware -> only safety reflight/series assessment required
 - Upload of 4 sample holders
- Differences with Matiss 1
 - Upload of sample holders in individual bubble wrap bag instead of Nomex pouch
 - Installation of all samples holders in the same location (Return Grid Sensor Housing) in Columbus module but still at the same time
 - Different exposure durations for each sample holders (45 days, 90 days, 180 days and 360 days) to evaluate the kinetic component

9 © cnes

Matiss – Exposure in Columbus

Matiss 2 – Timeline and challenges

- Timeline
 - Upload of 4 sample holders on Cygnus CRS OA-9 (launch on 20th May 2018)
 - Installation of 4 samples holders on around 23rd August 2018
 - Download of 4 samples holders on Soyuz vehicles

Challenges

- ISS flight plan very dynamic with respect to vehicles launches
- Trade-off between science objectives and requirements and flight plan
 modifications to be considered

Matiss 2 – Flowchart

Matiss 3 - Roadmap

- Why a roadmap?
 - Specifications about the antibacterial properties of surfaces for spatial activities do not exist
 - Evaluation of innovative surfaces to limit their contamination is encouraged by Space Agencies
 - Biological contamination control for human spaceflights is a major topic for future programs of exploration

13 © cnes

Matiss 3 - Roadmap

- Objective
 - Define and design new control systems of biological contamination for the exploration,
 - Give a preliminary frame and a multiannual orientation to future activities conducted by CNES, ENS of Lyon and CEA-Leti
 - Define :
 - The most adequate antibacterial cover
 - The industrialization strategy of the deposit of the cover
- How?
 - Continue Matiss experiments with possible evolutions
 - Offer Matiss to partners as a test bench for other kind of studies

AgroSpace-MELiSSA workshop – Rome May 16-18 2018

Matiss first results

Arrival at CADMOS on 8th of June 2017

Acknowledgments

cnes

SAINT-GOBAIN

THANK YOU FOR YOUR ATTENTION

Any questions?

cecile.thevenot@cnes.fr

