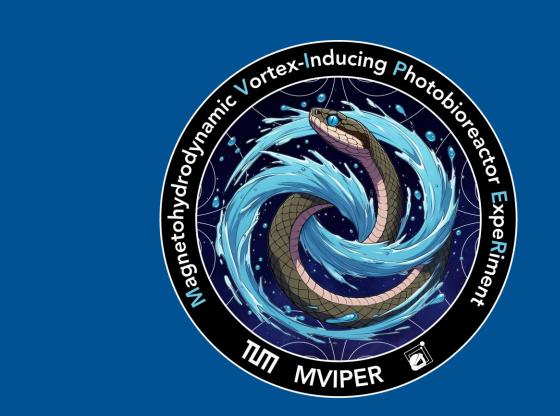


MVIPER – The Magnetohydrodynamic Vortex-Inducing

Photobioreactor Experiment

Luisa Metten

Technical University of Munich (TUM)


Professorship of Human Spaceflight Technology

Who We Are

Core Team

Lina Salman

Matthias Kura

Fabio Schäfer

Luisa Metten

Pablo Martín-Carrilero

Alex Zieser

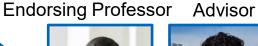
Supporting Members

Jayanth Narra

Siwar Barwagui

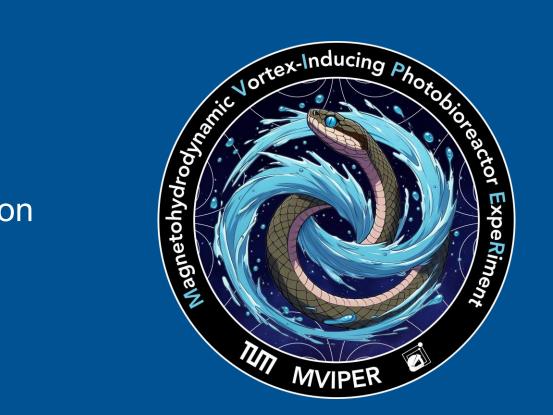
Katharina Obersteiner

Lucien Volk


llyasse Taame

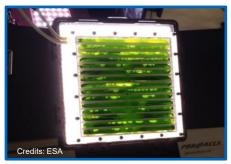
Philipp Laub

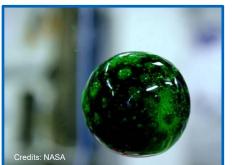
Jona Tomasik


Detrell

Prof. Dr. Gisela Prof. Dr. Álvaro Romero-Calvo

Concept Introduction


Context and Background – Photobioreactors


Photobioreactor Technology for Biological Life Support Systems

- → Challenges in current designs:
 - Liquid pumping
 - Liquid-Gas Phase separation

<u>But:</u> Membranes and pumps require frequent repair or exchange

Proposed solution: ...

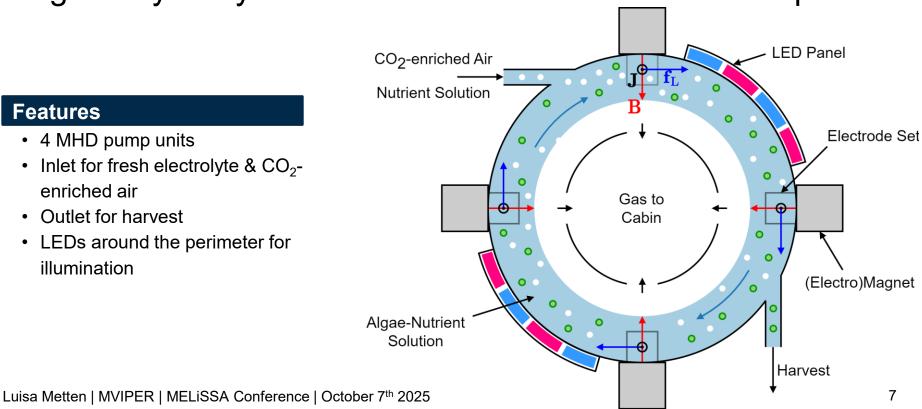
Magnetohydrodynamic Vortex PBR concept

Liquid Movement through Lorentz Force

- Electrically conductive solution
- Magnetic field B, orthogonal electric field E
- → Lorentz force F
- Well-studied and applied mechanism

Phase separation through Centrifugal Buoyancy

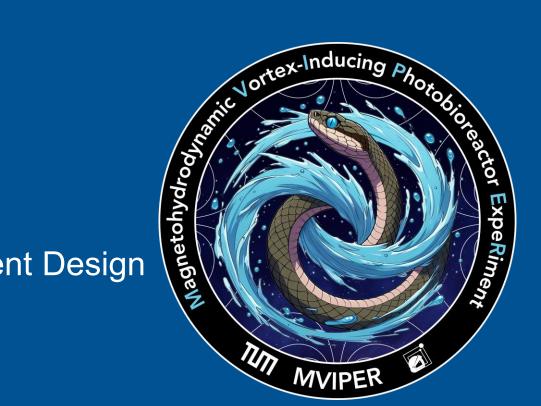
 Ring shape of the algae chamber to induce centrifugal force on the liquid



Magnetohydrodynamic Vortex Photobioreactor Concept

Features

- 4 MHD pump units
- Inlet for fresh electrolyte & CO₂enriched air
- Outlet for harvest
- LEDs around the perimeter for illumination



Is this feasible?

MVIPER Experiment Design

Objectives

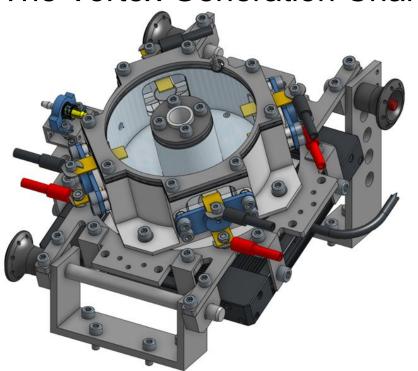
Scientific Objectives

1. **Demonstrate acceleration** of nutrient solution in a microgravity environment utilizing MHD drive technology

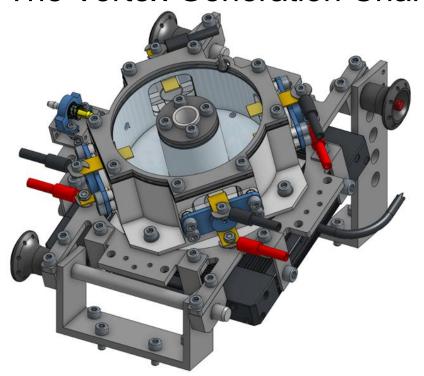
 Demonstrate phase separation in a microgravity environment utilizing MHD drive technology

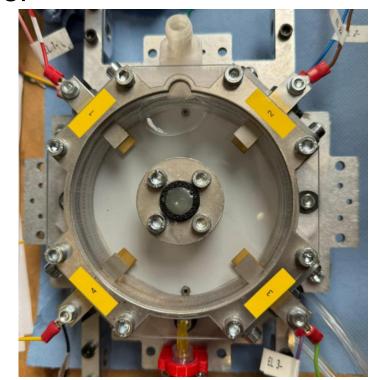
 Investigate design characteristics and validate models for future system modeling and sizing

Educational Objectives

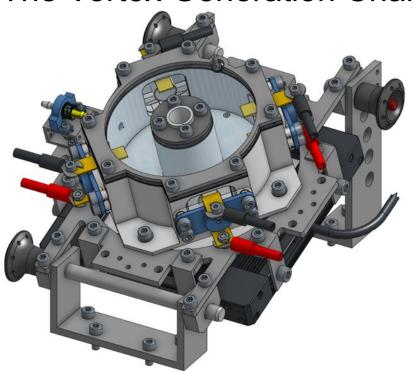

 Learn and experience the planning, development, and operation of experiments in microgravity science

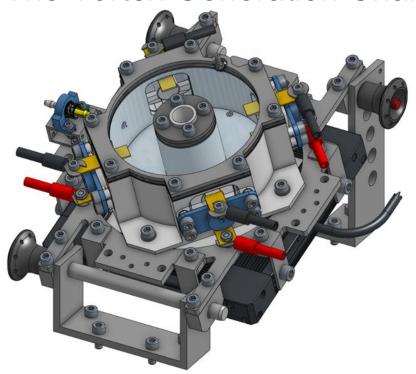
2. Pass the gained **knowledge** and experience to current and future students of the Technical University of Munich and beyond





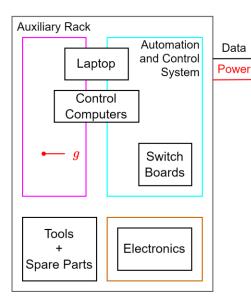
- Electrolyte (similar to algae nutrient solution)
- 4 MHD Pump Modules
- Inclined to facilitate gas venting
- Clear polycarbonate top plate & Back lighting

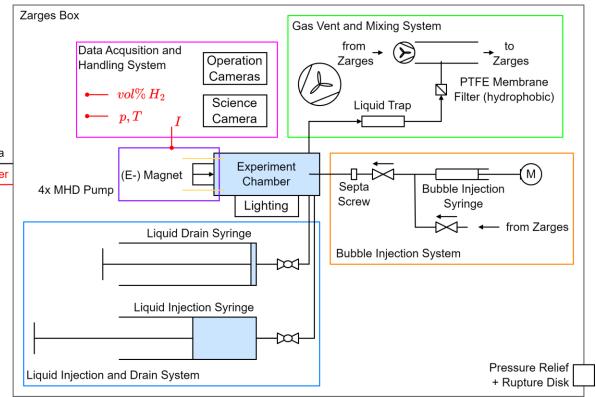




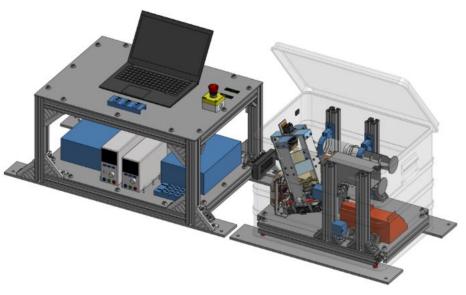
Field Generation:

- Under Direct Current, electrolysis occurs
- → Simple and doable within the timeline
- Integration of Alternating Current system using H-bridges
- → Limited electrolysis, but complex electronics

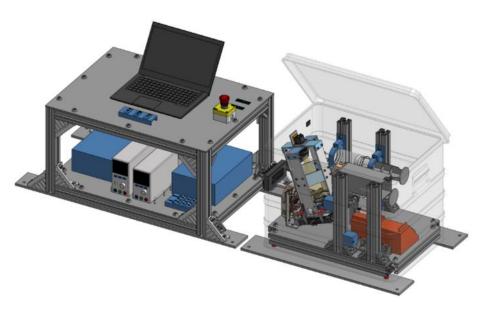

Flow Visualization:


- Particle tracking
- Ink injection
- Bubble injection

System Overview



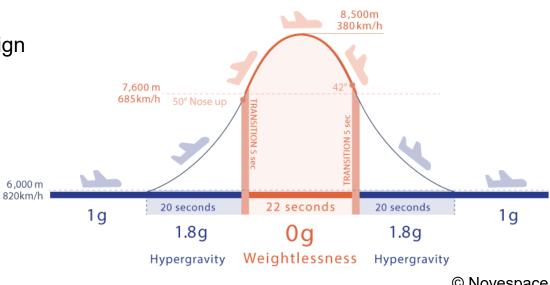
Flight Assembly



Flight Assembly

Test Campaign

ESA Academy Experiments Programme

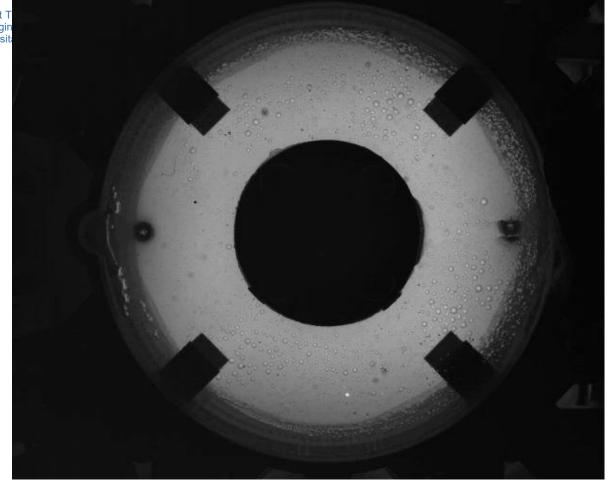


Parabolic Flight

- 87th ESA Parabolic Flight Campaign
- 3 Flights with 30 parabolas each
- 22s of microgravity
- Stable vortex after ~10s

© Novespace

Flight Campaign - Some pictures



© Novespace

Next Steps and future

- Analysis of flight data and results & comparison of the behavior of flow vs. predicted behavior
- Improvements and redesign of chamber/setup
- Follow-up experiments investigating improved/different design

Preliminary flow field profile based on particle velocity

Outreach Activities

+ Participation in SpaceDay 2025@TUM

+ MVIPER DIY kit Initiative for students

+ Conference and Journal papers/presentations

+ Collaborations with industry partners & other student groups

Acknowledgements

With material and technical support from:

References

- [1]T. Niederwieser, P. Kociolek, and D. Klaus, "A review of algal research in space," Acta Astronautica, vol. 146, pp. 359–367, May 2018, doi: 10.1016/j.actaastro.2018.03.026.
- [2] G. Detrell, H. Helisch, J. Keppler, J. Martin, and N. Henn, "Microalgae for combined air revitalization and biomass production for space applications," in *From Biofiltration to Promising Options in Gaseous Fluxes Biotreatment*, Elsevier, 2020, pp. 419–445. doi: 10.1016/B978-0-12-819064-7.00020-0.
- [3] G. Detrell, "Chlorella Vulgaris Photobioreactor for Oxygen and Food Production on a Moon Base—Potential and Challenges," Front. Astron. Space Sci., vol. 8, p. 700579, Jul. 2021, doi: 10.3389/fspas.2021.700579.
- [4] S. Belz et al., "Preparatory Activities for a Photobioreactor Spaceflight Experiment Enabling Microalgae Cultivation for Supporting Humans in Space," in 66th International Astronautical Congress, Jerusalem, Israel, Oct. 2015.
- [5] J. Keppler, "Entwurf, Aufbau und Test des Algenmedium-Loops für das Experiment PBR@LSR", M.Sc. Thesis, University of Stuttgart, Stuttgart, Germany, 2015.
- [6] J. Bretschneider et al., "Functionality and setup of the algae based ISS experiment PBR@LSR," in 46th International Conference on Environmental Systems, Vienna, Austria, Jul. 2016.
- [7] S. Belz et al., "Microalgae Cultivation in Space for Future Exploration Missions: Results of the Breadboard Activities for a Long-Term Photobioreactor Spaceflight Experiment on the International Space Station," in 68th International Astronautical Congress, Adelaide, Australia, Sep. 2017.
- [8] H. Helisch et al., "Non-axenic microalgae cultivation in space Challenges for the membrane μgPBR of the ISS experiment PBR@LSR," in 48th International Conference on Environmental Systems, Albuquerque, NM, Jul. 2018.
- [9] J. Keppler et al., "The final configuration of the algae-based ISS experiment PBR@LSR," in 48th International Conference on Environmental Systems, Albuquerque, NM, Jul. 2018.
- [10]G. Detrell et al., "PBR@LSR: the Algae-based Photobioreactor Experiment at the ISS Operations and Results," in 50th International Conference on Environmental Systems, Lisbon, Portugal, Jul. 2020.
- [11]H. Helisch et al., "High density long-term cultivation of Chlorella vulgaris SAG 211-12 in a novel microgravity-capable membrane raceway photobioreactor for future bioregenerative life support in SPACE," Life Sciences in Space Research, vol. 24, pp. 91–107, Feb. 2020, doi: 10.1016/j.lssr.2019.08.001.
- [12]M. Kura, G. Detrell, and Á. Romero-Calvo, "Magnetohydrodynamic Vortex Photobioreactor Concept for Microalgae Cultivation in Space," in 54th International Conference on Environmental Systems, Prague, CZ, Jul. 2025
- [13]M. Monfort-Castillo and Á. Romero-Calvo, "Magnetohydrodynamic Electrolytic Cell for Efficient Oxygen Generation in Microgravity," in 53rd International Conference on Environmental Systems, Louisville, KY, Jul. 2024. [Online]. Available: https://hdl.handle.net/2346/99010
- [14]M. Monfort-Castillo and Á. Romero-Calvo, "Magnetohydrodynamic Drive for Water-Based CubeSat Propulsion," in 2023 Regional Student Conferences, Buffalo, NY: American Institute of Aeronautics and Astronautics, Jan. 2023. doi: 10.2514/6.2023-71279.
- [15]L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Course of Theoretical Physics, Vol. 8), 2nd ed., rev. and enl. Oxford [Oxfordshire] New York: Pergamon, 1984, ISBN: 978-0-08-030275-1.
- [16]R. E. Rosensweig, "Stress Boundary-Conditions in Ferrohydrodynamics," Industrial & Engineering Chemistry Research, vol. 46, no. 19, pp. 6113–6117, Sep. 1, 2007, ISSN: 0888-5885, 1520-5045.DOI: 10.1021/ie060657e.

References

- [17] Á. Romero-Calvo, "Novel Electromagnetic Space Applications: Electron-Based Touchless Potential Sensing and Low-Gravity Magnetohydrodynamics," Ph.D. dissertation, University of Colorado Boulder, Boulder, CO, 2022. [Online]. Available: https://hanspeterschaub.info/Papers/grads/AlvaroRomeroCalvo.pdf
- [18] Á. Romero-Calvo, H. Schaub, and G. Cano-Gómez, "Diamagnetically Enhanced Electrolysis and Phase Separation in Low Gravity," Journal of Spacecraft and Rockets, vol. 59, no. 1, pp. 59–72, Jan. 2022, ISSN: 0022-4650, 1533-6794. DOI: 10.2514/1.A35021.
- [19]S. Hart and Á. Romero-Calvo, "Design and Testing of a Magnetohydrodynamically Pumped Liquid Metal Cooling Loop for CubeSats," in 53rd International Conference on Environmental Systems, Louisville, KY, Jul. 2024. [Online]. Available: https://hdl.handle.net/2346/98992
- [20]S. T. Hart, C. Awald, E. G. Lightsey, and Á. Romero-Calvo, "Magnetohydrodynamically pumped liquid metal loops for CubeSat thermal control," International Journal of Heat and Mass Transfer, vol. 239, no. 7, Apr. 2025, ISSN: 00179310. DOI: 10.1016/j.ijheatmasstransfer.2024.126552.
- [21]E. A. Comstock and Á. Romero-Calvo, "External Plasma-Breathing Magnetohydrodynamic Space-craft Propulsion," in AIAA SCITECH 2025 Forum, Orlando, FL: American Institute of Aeronautics and Astronautics, Jan. 2025, ISBN: 978-1-62410-723-8. DOI: 10.2514/6.2025-2038.
- [22]T. St. Francis, S. Vitale, and Á. Romero-Calvo, "Design and Testing of a Magnetohydrodynamic Oxygen Generation Cell for Microgravity Operation," in 54th International Conference on Environmental Systems, Prague, Czech Republic, Jul. 2025. [Online]. Available: https://hdl.handle.net/2346/102840
- [23]Ö. Akay et al., "Magnetically induced convection enhances water electrolysis in microgravity," Nature Chemistry, Aug. 2025. DOI: 10.1038/s41557-025-01890-0.
- [24] M. Kura, "Magnetic Phase Separation for Microalgae Applications in Microgravity," Semester Thesis, Technical University of Munich, Ottobrunn, Germany, 2024. doi: 10.13140/RG.2.2.35614.86085/1
- [25]S. Abdur Razzak et al., "Microalgae cultivation in photobioreactors: sustainable solutions for a greener future," Green Chemical Engineering, vol. 5, no. 4, pp. 418–439, Dec. 2024. DOI: 10.1016/j.gce.2023.10.004
- [26]C. Posten and S. Feng Chen, Eds., Microalgae Biotechnology, 1st ed. 2016, Advances in Biochemical Engineering/Biotechnology 153, Cham: Springer International Publishing: Imprint: Springer,2016, ISBN: 978-3-319-23808-1. DOI: 10.1007/978-3-319-23808-1
- [27]B. Ganzer, "Integration of an Algal Photobioreactor in a Synergistic Hybrid Life Support System," ISBN: 978-3-8439-1179-5, Ph.D. dissertation, University of Stuttgart, Stuttgart, Germany, 2012.
- [28]M. Kura, G. Detrell, and Á. Romero-Calvo, "Diamagnetic Phase Separation for Microalgae Photo-bioreactors in Microgravity," in 54th International Conference on Environmental Systems, Prague, Czech Republic, Jul. 2025. DOI: 10.13140/RG.2.2.12932.2368
- [29] J. Bretschneider, S. Belz, M. Buchert, E. Nathanson, and S. Fasoulas, "Development and Parabolic Flight Testing of a Closed Loop Photobioreactor System for Algae Biomass Production in Hybrid Life Support Systems," in 65th International Astronautical Congress, Toronto, CA, Oct. 2014
- [30]L. Poughon et al., "Limnospira indica PCC8005 growth in photobioreactor: model and simulation of the ISS and ground experiments," Life Sciences in Space Research, vol. 25, pp. 53–65, May 2020, ISSN: 22145524. DOI: 10.1016/j.lssr.2020.03.002.
- [31]S. Podhajsky, K. Slenzka, B. Harting, C. Posten, and I. Wagner, "Physiological Research and Functional Verification of the ModuLES-PBR," in 65th International Astronautical Congress, Toronto, Canada, Oct. 2014
- [32] Wagner, "Photobioreactors in Life Support Systems A microalgae-based reactor concept operating under microgravity conditions," Ph.D. dissertation, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2018. DOI: 10.5445/IR/1000086295

ПДП

