

Introduction

- Higher plants are vital for Bioregenerative Life Support Systems (BLSS) such as the MELiSSA loop for producing food, H₂O, and O₂ and capturing CO₂.
- Mineral nutrition of crop in Space is currently ensured using slow-release mineral fertilizers, but on the long term it will need to be ensured by recycling nutrients from waste produced within BLSS.
- However, producing optimal nutrient solutions for hydroponic crop production from waste fluxes will be challenging (Frossard et al., 2024).
- It is therefore probable that crops will be growing under suboptimal conditions in BLSS.
- The impact of these suboptimal conditions on plant growth should be known so that their performance in terms of food, H₂O, and O₂ production and CO₂ uptake can be modeled in a realistic manner and on the long term.

Introduction

The Plant Characterization Unit (PCU) of ESA @ the University of Naples is an appropriate equipment
for collecting such data because it allows measuring the release of O₂, CO₂ and H₂O as well as growth,
canopy temperature and element concentrations in the nutrient solution (Pannico et al., 2022).

The PCU Pannico et al. (2022)

- But the PCU is highly demanded and allow to grow only one crop with one treatment at a time.
- Schiefloe et al. (2023) studied the effect of the NO₃ to NH₄ ratio on lettuce growth in the PCU.
- The aim of this study was to assess whether we could measure the impact of nutrient solutions enriched in NaCl or depleted in K on plant growth compared to a plant growing under in an ideal nutrient solution using the PCU

Materials and Methods

Lettuce (Lactuca sativa) cv Grand Rapids

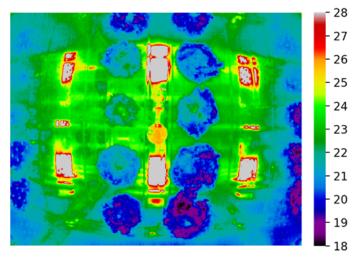
- Optimum nutrient solution (ACSA) control (2 runs, control_1 and control_2)
- ACSA plus 27 mM NaCl (1 run, +NaCl)
- ACSA with 0.5 mM K (instead of 4.8 mM) (1 run, -K)

- Control_1: 24/11-22/12/2022

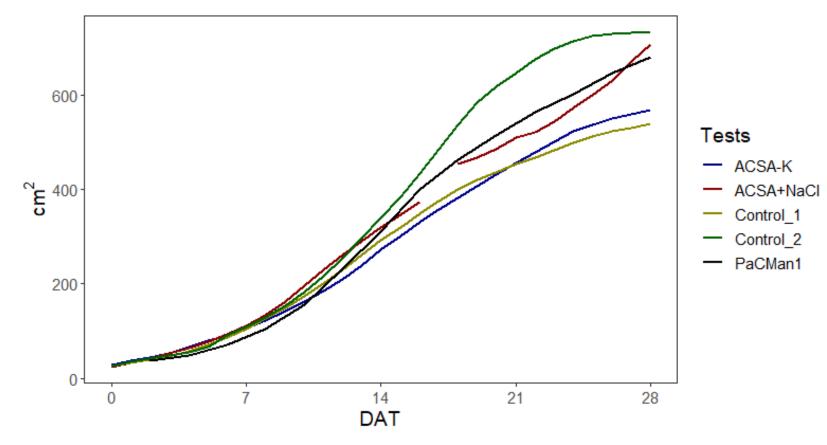
- +NaCl: 26/01-23/02/2023

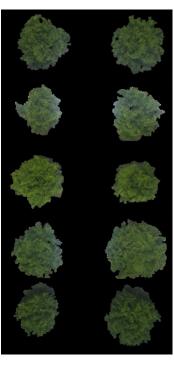
- -K: 02/03 -30/03/2023

- Control 2: 06/04-04/05/2023


• 10 plants/test (density 5.6/m²)

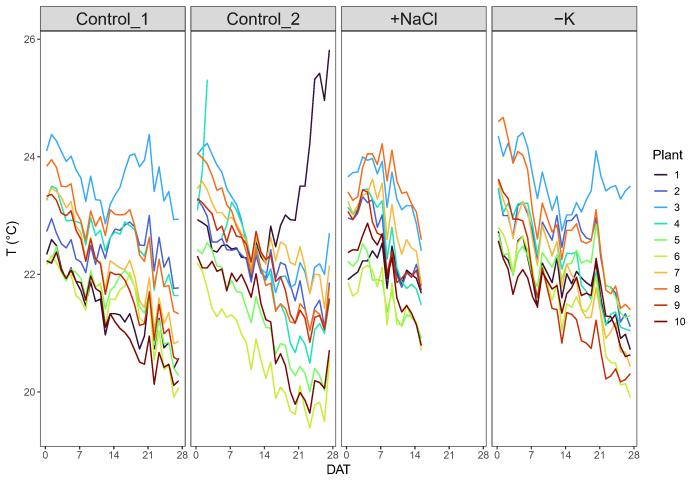
https://www.myseeds.co/


Analyses


- Monitoring of plant growth during the experiment
 - Net O₂ and H₂O production
 - Projected leaf area, canopy temperature
- Postharvest measurements
 - Plant biomass, leaf production
 - Nutrient concentration in biomass
 - Maximum quantum efficiency of photosystem (Fv/Fm)
 - Stomatal conductance, transpiration and C concentration in biomass
 - SPAD
- Ion concentration in the nutrient solution at the end of plant growth

Leaf temperature of the plants at 28 DAT of the Control_1.

Results: Projected Leaf Area (average values)



Top view photo inside the PCU at 20 DAT of -K.

- Differences between the two control treatments;
- Inter plant variability
- Control_2 >+NaCl>-K

Results: Canopy Temperature (data per plant)

- Canopy temperature decreases as leaf surface increases: OK
- Huge variability between plants

Results: Biomass Production (1)

Test	Leaf DW	Stem DW	Root DW	Leaf number	Leaf area
		g plant-1		leaves plant ⁻¹	cm² plant-1
Control_1	17.8 ± 3.3 ^{ab}	4.2 ± 1.0 ^a	3.6 ± 0.5^{c}	77.6 ± 21.6 ^b	2691 ± 925°
Control_2	21.1 ± 3.9 ^a	4.4 ± 0.7 ^a	6.3 ± 0.6^{a}	84.1 ± 16.0 ^{ab}	3289 ± 827 ^{abc}
+NaCl	18.7 ± 2.3 ^{ab}	4.3 ± 1.0 ^a	4.8 ± 0.5 ^b	102.6 ± 14.8 ^a	4053 ± 573 ^a
-K	17.0 ± 2.3 ^b	3.5 ± 0.7 ^a	5.0 ± 0.9 ^b	71.5 ± 16.0 ^b	2936 ± 828bc

- Differences between the two control treatments;
- Large standard deviations

Results: Biomass Production (2)

Top view photos of the PCU taken right before the harvest at 28 DAT of Control_1 (A), Control_2 (B), +NaCl (C), -K (D).

Problems of leaf necrosis/thickening (Ca deficiency?): max in control_1, min in Control_2

Results: O₂ and H₂O Production

Tests	O ₂ produced	H₂O produced	O ₂ produced	H₂O produced
	mol plant ⁻¹	L plant ⁻¹	mmol (g DW shoot) ⁻¹	L (g DW shoot) ⁻¹
Control_1	0.86	3.21	0.039	0.15
Control_2	0.94	3.34	0.037	0.13
+NaCI	0.92	3.11	0.040	0.14
-K	0.77	2.71	0.038	0.13

Results: Nutrient Concentrations in Leaves

Crop Test	Ca	K	Mg	N	Na	Р
	mg (g DM) ⁻¹					
Control 1	4.0 ± 0.9^{b}	33.3 ± 6.1 ^b	1.4 ± 0.2^{b}	38.9 ± 6.6^{a}	1.5 ± 0.2^{c}	4.2 ± 1.1 ^b
Control_1						
Control 2	7.1 ± 1.3 ^a	44.2 ± 5.9^{a}	1.8 ± 0.2^{ab}	43.3 ± 5.4^{a}	1.4 ± 0.2^{c}	6.3 ± 0.8^{a}
Control_2						
+NaCl	5.9 ± 0.5^{a}	48.9 ± 3.0^{a}	0.5 ± 0.1 ^c	47.1 ± 2.5^{a}	12.6 ± 1.7 ^a	6.0 ± 2.0^{a}
TNaci						
-K	6.5 ± 1.4 ^a	16.0 ± 3.0°	1.8 ± 0.3^{a}	41.9 ± 9.3^{a}	6.2 ± 1.4^{b}	6.2 ± 1.1 ^a
-1/						
a m 4 i ma u ma m a m *	45 75	22 64	25 40	22 40		25.75
optimum range*	4.5 – 7.5	33 - 64	2.5 – 4.0	33 -48	-	3.5 -7.5

To be noted

- Ca, Mg, N, P are in the optimum range (considering all leaves)
- Na is high in +NaCl
- K is low in -K

Results: Micronutrient Concentrations in Nutrient Solution

Crop test	DAT	Cu	Zn
		mç	g L ⁻¹
Theoretical concentration at start		0.05	0.22
Control_1	0	0.33 ± 0.00	0.90 ± 0.00
	28	1.23 ± 0.01	1.91 ± 0.01
+NaCl	0	0.25 ± 0.01	0.47 ± 0.00
	28	0.85 ± 0.06	1.06 ± 0.01
-K	0	0.08 ± 0.00	0.55 ± 0.00
	28	0.52 ± 0.02	1.26 ± 0.01
Contol_2	0	*	0.39 ± 0.03
	28	0.50 ± 0.08	1.03 ± 0.01

To be noted

Cu and Zn concentrations were too high at beginning of control_1 and increased with time

Conclusions

- High inter plants variability and high variability between control treatments make results analysis very complicated.
- Inter plants variability can be due to variability in light, ventilation, temperature within the PCU or/and to variability between plantlets.
- Why are results from control_1 and control_2 different? We do not know. May be substances are
 released from the hardware. In any case this shows that treatments need to be repeated in several
 runs.
- Results were compared to those previously obtained by ESA/NASA; this comparison suggests that
 results from control_2 are closer to what could be expected from a lettuce growing under optimal
 conditions.
 - Although leaf surface development was slower in +NaCl compared to control_2, no large effect was observed on plant performance with Grand rapids; this cultivar tolerates well the presence of NaCl.
 - The -K treatment resulted in lower biomass, leaf surface, and H_2O and O_2 production.
- The PCU is currently updated in the PACMAN3 project to remedy to the current shortcomings.

Many thanks for you attention!

Acknowledgements

- Funding was provided by the European Space Agency through the Micro-Ecological Life Support System Alternative (MELiSSA) project "Plant characterization unit for closed life support system engineering, manufacturing and testing Pacman 2".
- To Luigi Duri (University of Naples Federico II) and the team of students who supported the
 experiments from the seedling preparation to the harvest, to Claudia Quadri (Enginsoft) for contributing
 to the data evaluation and for great assistance during the experiments, and to the colleagues in the
 Group of Plant Nutrition for their help during the analyses.

