

Model structuration and review for MELiSSA knowledge and control.

PASCAL

Laurent POUGHON

Institut Pascal UMR 6602, UCA/CNRS/SIGMA 4, Avenue Blaise Pascal TSA 60026 - CS 60026 63175 Aubière Cedex, France

MELiSSA (Micro-Ecological Life Support System Alternative)

- concept inspired from a lacuste (lake) ecosystem
- gain knowledge on regenerative systems, aiming to the highest degree of autonomy and consequently to produce food, water and oxygen from mission wastes

Engineered approach : split the complex system into « unit operations/functions » (=compartments) which are investigated separatly (but within the objective of the complete loop integration)

* Credit : UAB-MELiSSA Pilot Plant 2007

Knowledge model: enables the representation of knowledge and the division of a process in subparts that can be studied individually, as well as their interactions.

Mechanistic model: it is based on physical, chemical, and biological laws describing the elemental mechanisms and processes of the system of interest. Mechanistic models are classified among the knowledge models.

Deterministic model: for a given input, the model output is always the same creating a form of determinism between inputs and outputs of system. The determinism is generally supported by mathematical expressions and results of calculations. The results are obtained either by solving systems of equations or by averaging stochastic calculations (e.g., Monte Carlo simulations). In the last case, the determinism includes the determination of the average values and of their standard deviations.

Understanding (gain knowledge) Mastery of the process

- Characterization (mass-energy balances)
- optimisation/operation
- control
- sizing

studies, models & modelling objectives/usage

Understanding (gain knowledge) Mastery of the process

- Characterization (mass-energy balances)
- optimisation/operation
- control
- sizing

Demonstrate that MELiSSA is feasible as a LSS

(fulfill functions ? and recycling efficiencies)

/IELiSSA knowledge and control | MELiSSA Conference – Toulouse – November 09 2022 | 5

Understanding (gain knowledge) Mastery of the process

- Characterization (mass-energy balances)
- optimisation/operation
- control
- sizing

Demonstrate that MELiSSA is feasible as a LSS (fulfill functions and recycling efficiencies)

Sizing the compartments for the loop (scale-up)

CREDITS :

Understanding (gain knowledge) Mastery of the process

- Characterization (mass-energy balances)
- optimisation/operation
- control
- sizing

1

2

3

Demonstrate that MELiSSA is feasible as a LSS (fulfill functions and recycling efficiencies)

- Sizing the compartments for the loop (scale-up)
- Operation and control of the loop (dynamic modelling and physical system)

udies, models & modelling objectives

Understanding (gain knowledge) Mastery of the process

- Characterization (mass-energy balances)
- optimisation/operation
- control
- sizing

Demonstrate that MELiSSA is feasible as a LSS (fulfill functions and recycling efficiencies)

3

Sizing the compartments for the loop (scale-up)

Operation and control of the loop (dynamic modelling and physical system)

ALiSSE criteria (sizes; efficiencies)

1

ation and review for iviglissa knowledge and control | MELiSSA Conference – Toulouse – November 09 2022 | 8

2 ongoing projects around models and control of complex systems

OSCAR (Optimal System-in-system Control & Architecture)

- Establish an organisational structure for developing knowledge models and control of LSS architecture
- Account for mass and energy balances
- Develop models of kinetic rates, both for physical and chemical and biochemical rate-limiting processes
- Interface the results of simulation with experimental information and strategy of control in the context of mission scenarios

VARSITY (VARiuS Integration of system sTudY for model based cybernetics for the control of complex systems)

- Review (and update) of the current mathematical models of the MELiSSA compartments
- Define a logic and mathematical model for the loop as a network of the different compartments connected by mass and energy exchange through thermal, bio and chemical processes
- Study, trade-off and elaborate an overall control strategy on the connected loop
- Improve the ALISSE tools as well as its deployment with the Mars Transit Phase

What models are we talking about in MELISSA?

Static model: it gives the status of a system at a time t.

Dynamic model: the output of the model is a function of time.

Surrogate model: For a given range of input conditions, a surrogate model provides suitable approximations of the complex model with the suitable level of accuracy. (CFD model \rightarrow N-tank in series model ; metabolic pathway model (FBA) \rightarrow stoichiometric equation)

Numeric model: Numerical translation (software/languages) of mathematical-knowledge models

Topologic model: it is mandatory for assembling the different parts of the system and describe matter flow, energy flow and information flows.

<u>Control model</u>: Their study is associated to topologic model (of the complete system). They include the definition of operating constraints, manipulated variables and action variables. They can be developed on the basis of the knowledge model to obtain predictive control models.

Where we are ? How to evaluate the MELiSSA models ?

DEPLOYMENT DEVELOPMENT RESEARCH

9

	accuracy and confidence for the required range of variables
B 	Model demonstration at relevant scale
7	Model validation and demonstration at different scales: lab scale, pilot scale
5	Numeric model analysis: sensitivity analysis
5	Numeric model calibration: identification of unknown parameters
4	Development of the numeric model: I/O vectors, variables, parameter
3	Formulation of the assumptions and hypotheses of the mod
2	Establishment of the general theoretical framework and approach
1	Definition of the general characteristics and objectives of th model: range of applicability requirements knowledge scale-up and down

Model Readiness Level

Model validated at operational scale with the required

[predictive] Control Model Readiness Level

L. POUGHON | Model structuration and review for MELiSSA knowledge and control | MELiSSA Conference – Toulouse – November 09 2022 | 12

es, parameters

the model

ves of the

ind down

Model review for MELiSSA knowledge and control : C4a

Process :

Air-Lift photobioreactor – characteristic time : ~ 100 h. – size ~ 100L /1 man (5-10% of O_2 needs)

Functions :

Oxygen producer , CO₂ consumer , Food (spirulina) producer

Model status [MELiSSA] :

Dynamic model : [PhotoSim] – *L. indica* (spirulina) growth in autotrophy (Nitrate or Ammonia source) + Light transfer model 2-flux surrogate model (flat or cylindrical reactor) + perfectly mixed reactor / Air-lift MPP reactor / Membrane photobioreacor

MRL : 8-9

Usage : Compartment simulation/control ; Complete loop steady state ; partial loop (C3+C4a+C5) dynamic and control model ; small size microgravity reactor (ArtemISS)

Current development :

Update of model for LED – High flux + Air-lift Upgrade for mixed N sources (Nitrate+Amonia+Urea)

Bottleneck for modelling (not fully solved) :

Lower Growth/productivities predicted with the new air-lift design (LED + High light flux + low residence time)

Usage : ligth control C4a-C5 (at various O2 setpoints)

[Credit : sherpa]

Usage : O2 productivity prediction

Usage : operating ranges for PBR

Predicted operating conditions (input gas y_{CO2} and input liquid TIC) to keep for the MPP Air-lift at HRT = 100h and pH 9.5 and recycling atmosphere for a 3 rat mock-

operation shall be :

- above dotted line to avoid C-limitation (limiting factor >0.85)
- below plain line to have < 0.2% $\gamma_{\rm CO2}$ at output.

Models review for MELiSSA knowledge and control (fast summary)

			Mode	l stat	:us		
	Process	Function	Static	Dyn.	Usage	Dev.	Bottleneck
C1	An. Thermo. Digestor / Membrane	OM> VFA+CO2+NH3	✓	×	Loop Steady State	Consortium caracterisation; Meta omics ; Thermomel	Feed complexity ; Consortium evolution ; Reactor heterogeneity ; SS instability
C2	An. MEC	VFA> C02 + H2	\checkmark	×	Loop Steady State	Hardware ; experiments ; Dyn. Model.	
C3	Aero . FBR	NH3> HNO3	√	√	FBR & Loop Steady State & dyn & control	Aero MABR	
	Aero . MABR	Urea> HNO3	V	×	Loop Steady State	Dyn. MABR	Biofilm<>Membrane
C4a	Aero. PBR	O2/CO2; food;	√	~	PBR & Loop Steady State & dyn & control	Update for LED High Flux - High HRT	deviation for LED High Flux - High HRT
C4b	НРС	O2/CO2; food;wate	r √	√ ×	Sim Loop Steady State	Plant Characterisation Units ; coupling Gas dyn<>plants growth ;	
	HPC Gas	Gas exchanges & flows		√ ×	HPC gas exchanges dyn		rate limiting processes microgravity ; root/shoot connected models

Models review for MELiSSA knowledge and control (MRL)

Models with MRL > 4 -5 usuable for control models

C4b (photobioreactor) and C3 (FBR nitrification) fully developed In development/improvement : C2 , C3-heterophic/MABR , C4b

In term of mechanistic/predictive modelling C1 is the most complex one (even if anaerobic digestion is a well known process)

MELiSSA loop

Static model for the full loop (*with former C2 compartment*)

Model status [MELiSSA] :

Usage : scenario / efficiencies / sizes (volume of reactors)

Current development :

Refurbishing of the structure (state vector / models + surrogate models / introducing dynamics model and 1srt order models for mass balance models)

MELiSSA loop

dynamic model for the partial loop (C3+C4a+C5)

Model status [MELiSSA] :

Usage : built in parallel with the MPP integration steps – control strategy + definition of functional tests of the loop

Current development :

Refurbishing of the structure (state vector / models + surrogate models / introducing dynamics model and 1srt order models for mass balance models) → toward a tool for both dynamic and steady state, integrating the MELiSSA model whatever is itscurrent devellopment status

MODEL STRUCTURATION AND REVIEW FOR MELISSA KNOWLEDGE AND CONTROL.

Institut Pascal, www.institutpascal.uca.fr

Laurent POUGHON laurent.poughon@uca.fr Lucie POULET Claude-Gilles DUSSAP

Marco GATTI Erik MAZZOLENI Lorenzo BUCCHIERI

Philippe FIANI Olivier GERBI Benjamin THIRION

THANK YOU.

www.melissafoundation.org

Follow us on social networks !

