

PLANTS FOR SPACE

ARC CENTRE OF EXCELLENCE

MATTHEW GILLIHAM
MELiSSA Conference
Toulouse - November 2022

To enable
human deep Space exploration

improve on-Earth sustainability
through
plant & food redesign

Plants for space

ARC CENTRE OF EXCELLENCE

IMPACT: NOW

2030

2040

P45: MULTIDISCIPLINARY TEAMS FOR COMPLEX SOLUTIONS

Food scientists

Plant scientists

Process engineers

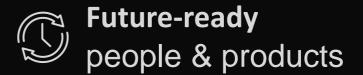
Systems engineers

Psychologists

Nutritionists

Educators

Lawyers



ZERO-WASTE PLANT 2 growth & processing

LEGAL, ETHICAL, REGULATORY & BIOSECURITY

☑ Protection for astronauts and planets

Legal reforms to support ethical growth of biomanufacturing

P4S Cultural Charter

PLANT SCIENCE

☐ Fast growth, zero-waste plants

☑ Plants as sensors

PLANT-BASED NUTRITION

☑ A suite of complete nutrition plants

FOODS WITH VARIED TEXTURE & FLAVOUR

✓ New plant-based health and food products

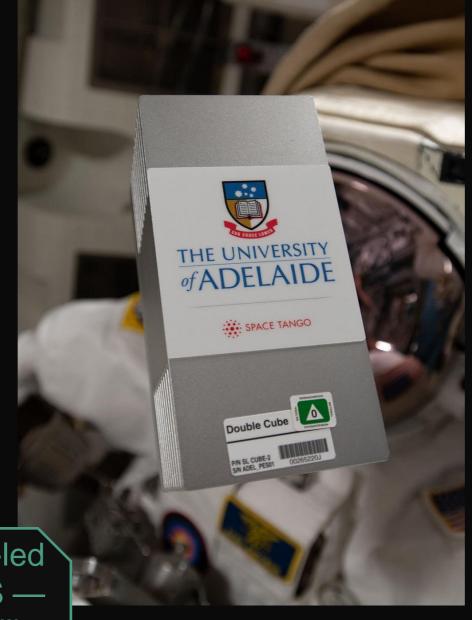
BIOMANUFACTURING

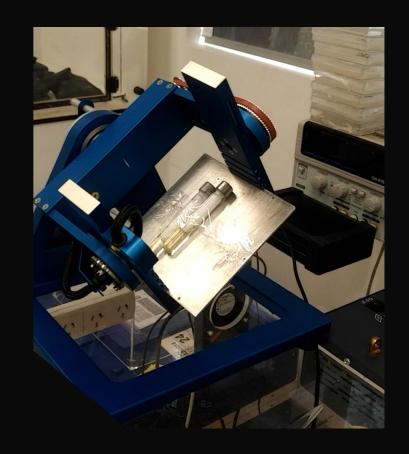
SUSTAINABILITY

☑ On-demand plant production

TEAMWORK & CONNECTIVITY

- ✓ Foods and plants to support psychological well-being in isolation
- A global hub for international space plant research

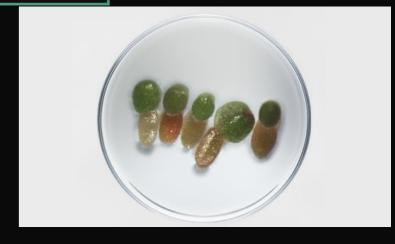


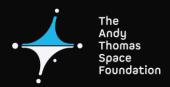


P4S PILOT PROGRAMS HAVE BEGUN

First Australian-led mission to ISS — pharmaceutical stability

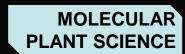
DUCKMEED





Leaves expressing

pigment marker



MOIXN

SINGLE CELL

GENE EDITING

LAW & POLICY

'OMICS

THE UNIVERSITY OF WESTERN AUSTRALIA

A TROBE

Australian

Space Agency

SOUTH AUSTRALIAN SPACE INDUSTRY

ENV. AG.

FOOD

THE UNIVERSITY of ADELAIDE

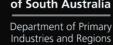
JÜLICH Forschungszentrum

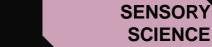
CENTRE

BIOPLATFORMS AUSTRALIA

FOOD' **PROCESSING**

STRUCTURING





OUR INVESTIGATOR TEAM

OUR EXPANDED TEAM

HDR

HDR

HDR

HDR

HDR

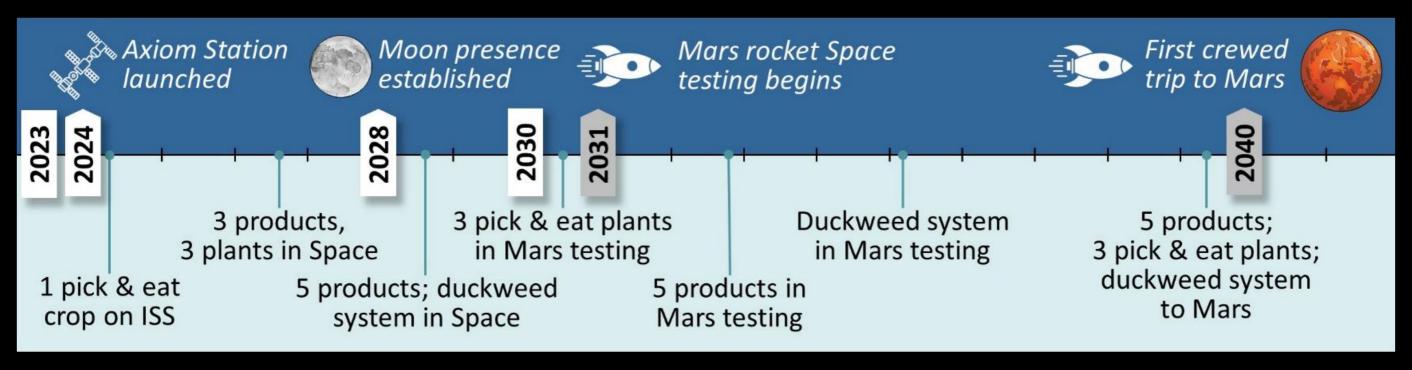
HDR

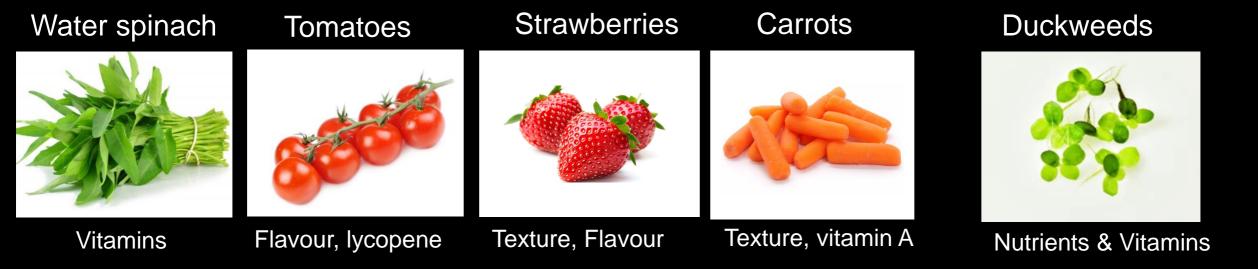
HDR

HDR

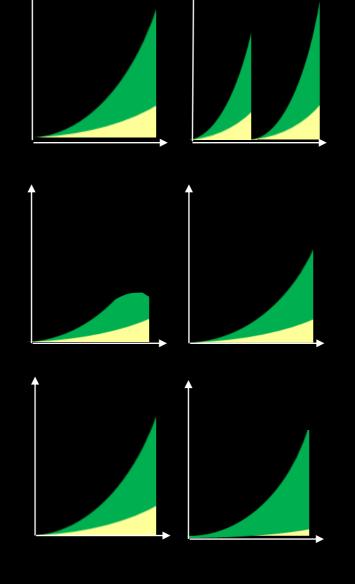
HDR

HDR


HDR


HDR

HDR

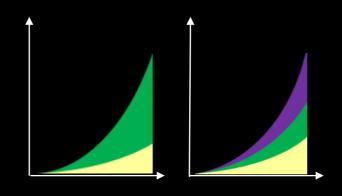

CHALLENGES

DOUBLE RELATIVE GROWTH RATE PER DAY ~0.3 TO >0.6

INCREASE NUTRIENT AND WATER USE-EFFICIENCY, AND SALT AND HYPOXIA TOLERANCE by 50%

RAISE HARVEST INDEX FROM 0.4–0.75

TO APPROACH 1.0

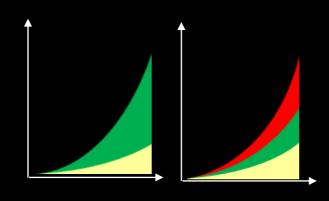

- Photorespiration
- Review stress responses (biotic & abiotic)

- Transporters & metabolites salt, nutrients
- Transpiration
- Hypoxia tolerance
- Successive harvesting
- Redesign and reduce root systems
- Tissue composition

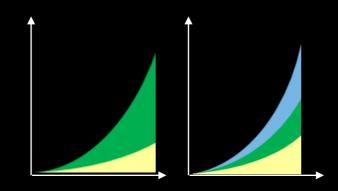
CHALLENGES

REFINE PROTEIN COMPOSITION

BETTER BALANCE OF ALL ESSENTIAL AMINO ACIDS FOR NUTRITION


- Amino acid profiles
- Protein turnover
- Storage proteins

MAXIMISE LEAF FAT CONTENT


CALORIC, NUTRITIONAL, AND TASTE IMPACT

CHANGE LEAF
CARBOHYDRATES

OPTIMISE STARCH & FIBRE CONTENT FOR HEALTH

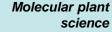
- Oleic acid formation.
- Increase fat sinks
- Decrease sugar export from leaves, inc.TAG

- Pectin (cardiovascular, cancer, bone)
- Soluble fibre
- Alter starch

HELPING TO PREPARE THE NEXT GENERATION OF LEADERS

Training &

professional


development

P4S NETWORKS & CO-ORDINATION BRING NEW OPPORTUNITIES

Plant physiology

Plant pharma

Plants as bioresources

> Controlled Env. Ag.

Systems engineering

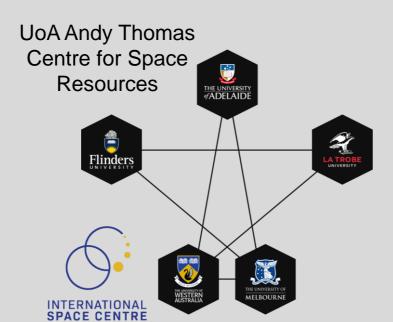
Food structuring

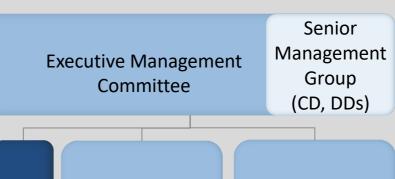
Food processing

Single cell 'omics

Gene editing

Law & policy


Education


Outreach

Psychology

Digestion

Sensory science

Node

Leadership

Program Leadership Committee

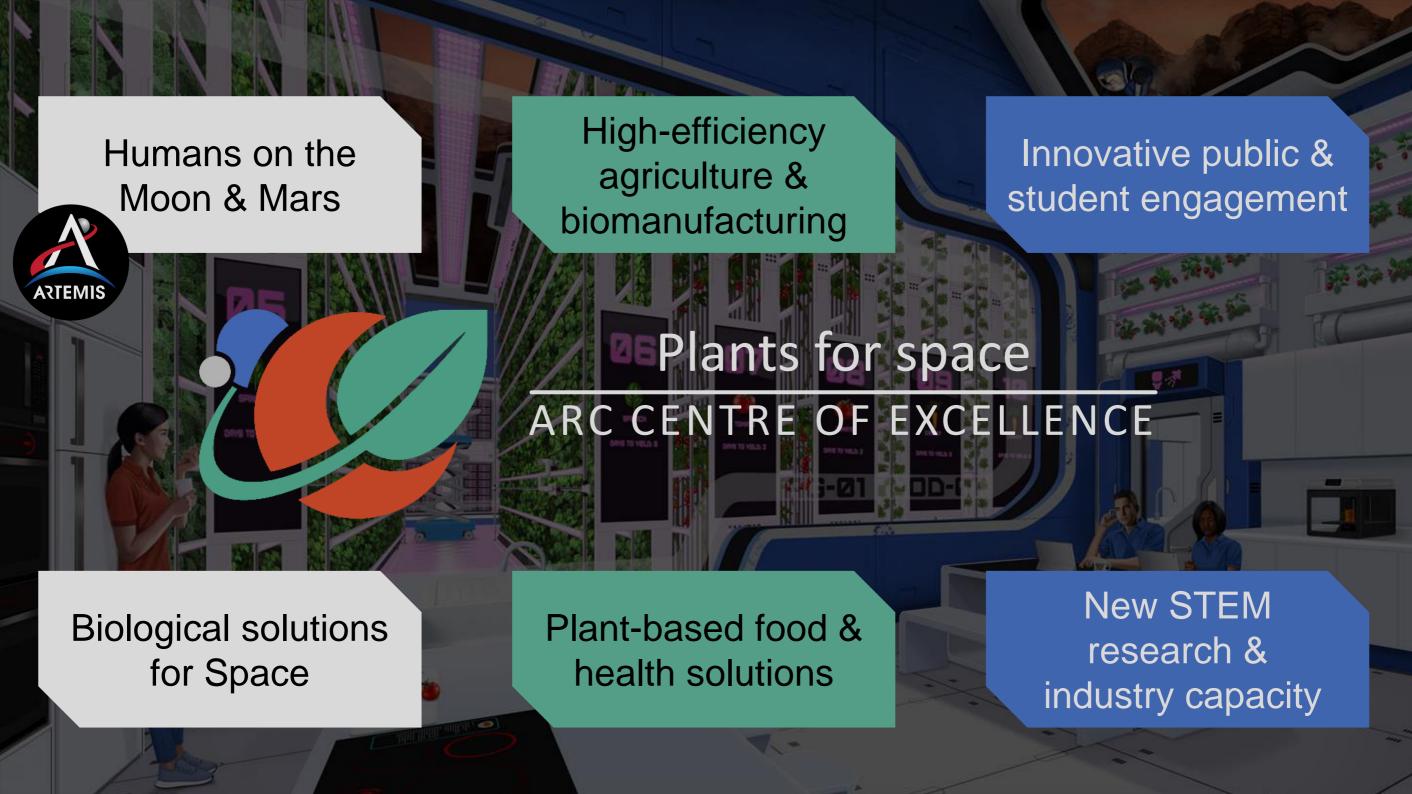
P4.2

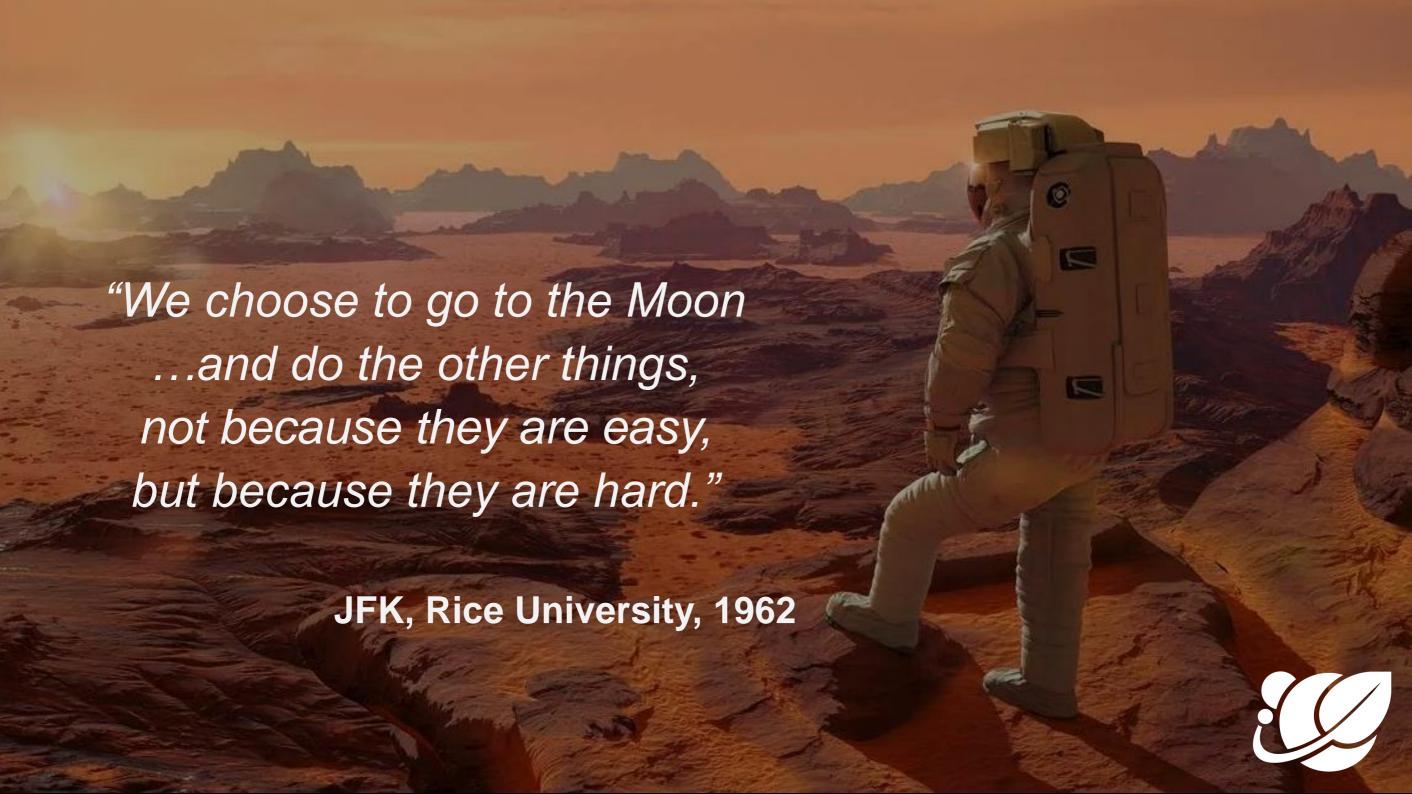
P4S Advisory Committee

Independent Research Advisory Committee

Translation & Entrepreneurship Committee

Ops

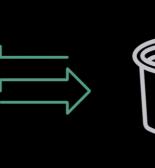


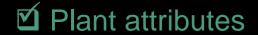


Department of Defence

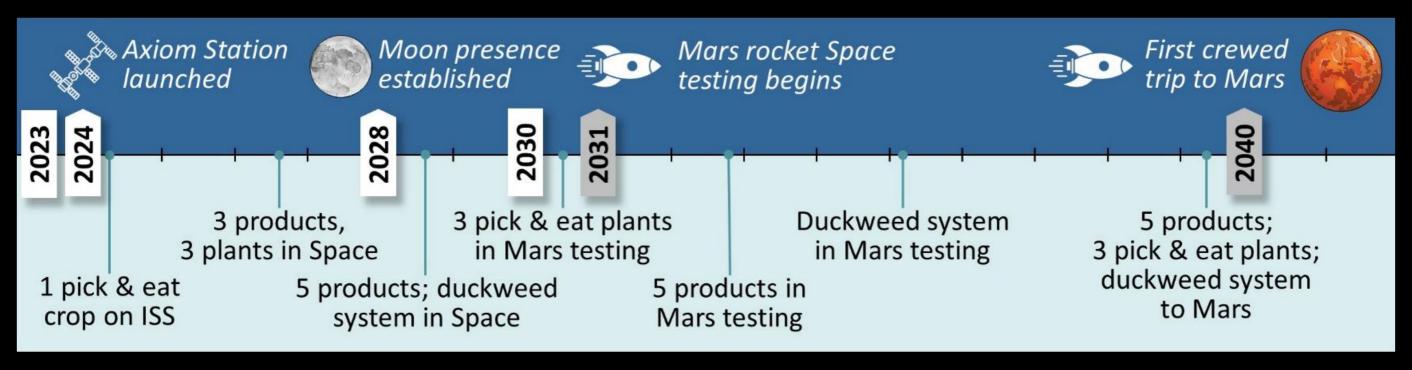
HAMILTON SECONDARY COLLEGE

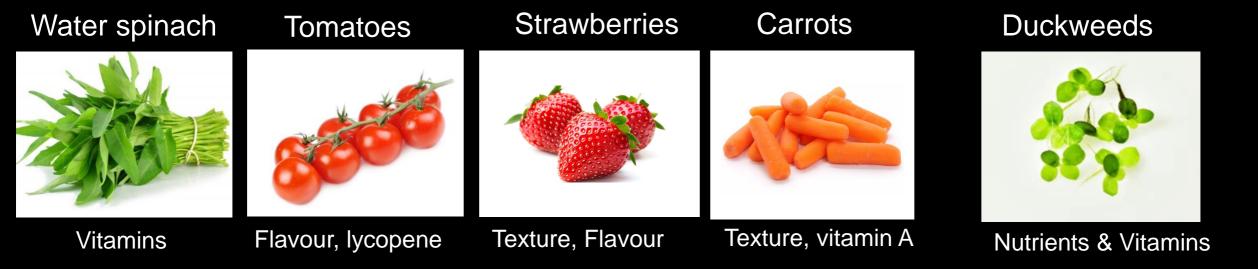
MULTIDISCIPLINARY P4S TEAMS FOR COMPLEX SOLUTIONS





structure & texture


- ✓ Nutrition, flavour & storage
- **☑** Digestibility

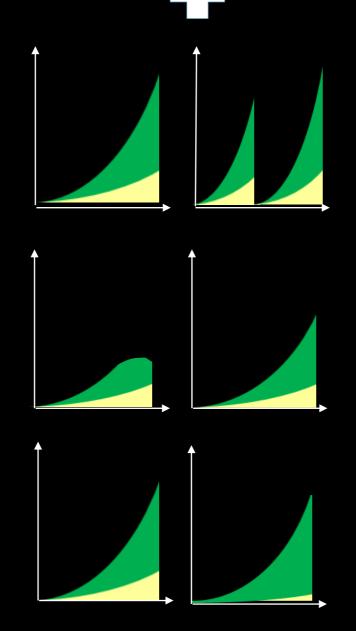


STATE OF PLAY

RADISH

LETTUCE

CHILLIES


CHALLENGES

DOUBLE RELATIVE GROWTH RATE PER DAY ~0.3 TO >0.6

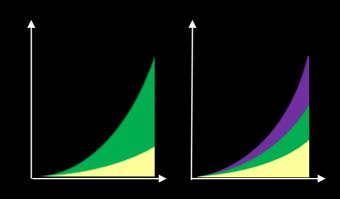
INCREASE NUTRIENT AND WATER USE-EFFICIENCY, AND SALT AND HYPOXIA TOLERANCE by 50%

RAISE HARVEST INDEX FROM 0.4–0.75

TO APPROACH 1.0

P4S TARGETS

- Photorespiration
- Reactive Oxygen Species quenching
- Stress responses


- Transporters & metabolites salt
- Hypoxia tolerance

- Successive harvesting
- Redesign and reduce root systems

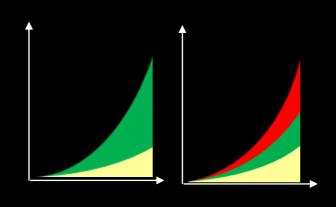
CHALLENGES

REFINE PROTEIN COMPOSITION

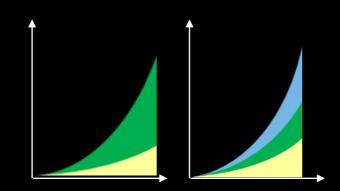
BETTER BALANCE OF ALL ESSENTIAL AMINO ACIDS FOR NUTRITION

Amino acid profiles

P4S TARGETS


- Protein turnover
- Storage proteins

MAXIMISE LEAF FAT CONTENT


CALORIC, NUTRITIONAL, AND TASTE IMPACT

CHANGE LEAF
CARBOHYDRATES

OPTIMISE STARCH & FIBRE CONTENT FOR HEALTH

- Oleic acid formation.
- Increase fat sinks
- Decrease sugar export from leaves, inc.TAG

- Pectin (cardiovascular, cancer, bone)
- Soluble fibre
- Alter starch

Our team is READY

Matt Gilliham (UoA)	Melissa de Zwart (Flinders)	Sally Gras (UM)	Harvey Millar (UWA)	Volker Hessel (UoA)	Ryan Lister (UWA)	Michelle Watt (UM)	Jim Whelan (LTU)	Kim Johnson (LTU)	Ian Small (UWA)	Eva Kemps (Flinders)	Mat Lewsey (LTU)	Jenny Mortimer (UoA)	Matt Tucker (UoA)	Sigfredo Fuentes Jara (UM)	Christine Feinle- Bisset (UoA)
Gioia Massa (NASA)	Jens Hauslage (DLR)	Jana Stoudemire (Axiom)	Sumen Rai (SASIC)	Christine Escibar (SpaceLab)	Jen Bromley (VF)	Jake Eisenberg (OPO)	Nadun Hennayaka (GAIA)	Jennifer Doudna (UCB)	Jay Keasling (UCB)	Adam Arkin (UCB)	Karen McDonald (UCD)	Simon Gilroy (UWM)	Eduardo Salas (Rice)	Murat Kacira (UAz)	Alex Webb (UCam)
lan Fisk (UoN)	Ulrich Schurr (Julich)	Didier Dupont (INRAE)	Raffaele Mezzenga (ETH)	Joanne McMillan (DrJo)	Sarah Baker (Hamilton)	Luca Bertolacci (VSSEC)	Jackie Carpenter (One Giant Leap)	Natalie Curach (BPA)	John Culton (UoA)	Ole Mouritsen (SfL)	Erik Murchie (UoN)	Sue Bastian (UoA)	(UCB)	Bo Xu (UoA)	L Ong (UM)
Ni Yang (UoN)	Louise Hewson (UoN)	Jim Stevens (VF)	Katie Wilkins (VF)	John Stephen (AGRF)	Nick Beagley (DSTG)	Daniel Kaschubek (yuri)	Megan Hochenstra sse(IGI)	Olivia Menard (INRAE)	Sasi Nayar (SARDI)	Maria Saarela (SARDI)	Paul Petrie (SARDI)	Michelle Waycott (BGSH)	Siyuan Chen (Twist)	Bernd Willems (Twist)	Emily Hilder (DSTG)
Christian Maender (Axiom)	Simon Jenner (Axiom)	Kirsten Whittingha m (Axiom)	Daniela Bezdan (yuri)	Brad Ringeisen (IGI)	Zenka Mathys (DSTG)	Nicola Sasanelli (ATSF)	Michael Pakakis (VSSEC)	Mak Djukic (BGSH)	Holger Plange (MineARC)	Daragh Quinn (MineARC)	Mark Dupal (Twist)	Jeremy Dumsday (Twist)	Ryan Edwards	Melinda Nguyen	Jon Diab
Staff Matt Morgan HDR	Staff Quy Don Tran HDR	Svenja Schmidt	Changping Zhuang	Shu Liang	Manuel Alejandro Varon Hoyos HDR	Staff Sushant Bajpai HDR	Thitima Sombuttan	Staff George Warne HDR	Robert Rintoul	Staff Nigel Vermonden HDR	Staff Laura Beckett HDR	Alex Thomas	HDR	HDR	HDR

Water spinach Ipomoea aquatica

Key advantages

- strong visual and texture appeal
- fully edible shoot and regenerating rhizome
- grows in unstirred water based media and hydroponics
- high protein content in leaves (2.5-3g per 100g)
- genetic transformation available since 2005

DOI:10.5511/plantbiotechnology.20.335

 fully sequenced genome in 2021 (550.03 Mb) includes 30,693 predicted protein-coding genes.

DOI:10.1016/j.scienta.2021.110501

Tomatoes Solanum lycopersicum

Key advantages

- high, energy-rich yield
- strong appeal for flavour, texture
- extensive research community and bioengineering
- high in key vitamins
- high efficiency agrobacterium-mediated transformation doi: 10.1007/978-1-4939-8778-8_16.
- fully sequenced genome in 2012

doi:10.1038/nature11119

CARROTS Daucus carota

Key advantages

- strong appeal for flavour and crunch
- high in key vitamin A precursors
- edible leaves and a large tuber for nutrient manufacture and storage
- Genetic transformation of Daucus and other apiaceae species. Transgenic Plant J. 2008;2:18–38.
- High-quality genome assembly in 2016 doi.org/10.1038/ng.3565

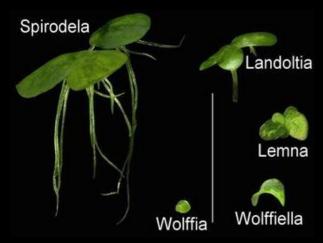
Strawberries *Fragaria* spp.

Key advantages

- Extremely strong visual, flavour, texture appeal
- high in key vitamin precursors
- edible leaves and fruit
- Genetic transformation with low efficiency (5%) by agrobacterium 2014

doi.org/10.4161/gmcr.27229

• Challenging octoploid genome, assembly and gene prediction in 2019 for $Fragaria \times ananassa$ doi: 10.1038/s41588-019-0356-4



Duckweed *Lemna, Wolffia* spp.

Key advantages

- Fastest growing plant on earth, doubles in a day
- Grows in stagnant water & scavenges nutrients
- Salt tolerant, radiation resistant
- Nutrient profile close to human requirements
- Highly adaptable metabolism
- Genome sequences and transformable

doi.org/10.1007/978-3-319-58538-3_67-1