

Some insights on photobioreaction engineering

MELiSSA workshop – Lausanne – 8-9 June 2016

Industrial interests for microalgae

Microalgae: a new vegetable feedstock with high potential

□ Composition

- Proteins
- Carbohydrates
- Lipids
- Specific metabolites: antioxidant, pigments, Polyunsaturated Fatty Acids, ExoPolySaccharides...

Application areas

- Food
- Feed
- Food supplement
- Biofuel production
- Pharmaceutical
- Cosmetics

Photosynthetic microorganisms cultivation

Limiting growth factors

- LightDissolved carbon
- Chemical nutrients
- Physicochemical conditions (T,pH)
- Bacterial contamination

Aim of bioprocess engineering: control of growth limitations

Modelling light-limited growth in photobioreactors

For maximal efficiency, photobioreactor are to be operated with physical limitation by light (light-limited growth model is thus the a basis in photobioreaction engineering)

<u>Classification:</u>
Artificial or solar light
Closed or open systems
Cylindrical tank, plan systems, tubular reactors
Free or immobilised cells
Mechanical agitation or airlift

As a result, for a given geometry, photobioreactor efficiency is fully dependent on light supply

MODELING LIGHT-LIMITED GROWTH IN PHOTOBIOREACTOR

(1) (2) (3) are solved to give biomass growth (Cx) with respect to radiation conditions

Radiative transfer modeling

Optical properties are a prerequisite to control light transfer in microalgae cultures

<u>Interests:</u>

•The method can be applied to any species or mutant (various shapes, size, pigment contents)

•Effect of pigment content variation can be considered (**pigment** adaptation, pigment degradation due to mineral starvation)

Radiative transfer modeling

Understanding the role of light attenuation conditions

Kinetic modeling of photosynthetic growth

 experimental -model

700

500

In-depth approach with the aim to develop knowledge model

 $\mu = \mu_{max} \frac{G}{K_{S} + G}$ Specific growth rate: usual equation (Monod type unstructured model)

<r_x>=µX

Predictive formulation

$$J_{O_2} = \left[\rho \,\overline{\varphi}_{O_2}' \,\mathcal{H} - \frac{J_{\text{NADH}_2}}{v_{\text{NADH}_2 - O_2}} \times \frac{K_{\text{r}}}{K_{\text{r}} + G}\right] = \left[\rho_{\text{M}} \,\frac{K}{K + G} \,\overline{\varphi}_{O_2}' \,\mathcal{H} - \frac{J_{\text{NADH}_2}}{v_{\text{NADH}_2 - O_2}} \times \frac{K_{\text{r}}}{K_{\text{r}} + G}\right]$$

JO2 Local specific rate of oxygen production (mole/kg/s) Specific local volumetric radiant power density absorbed Α

(*A* $= \int EaG\lambda d\lambda$

- E_a G Mass absorption coefficient
- Local spherical irradiance
- Κ Half saturation constant for photosynthesis
- Saturation constant for respiration inhibition at light (obtained K, from JO2=0)
- C-molar mass for the biomass Mx
- **Biomass volumetric growth rate (productivity)**
- $r_{\mathcal{F}_{O_2}}$ Energetic yield for photon conversion
- Maximum energetic yield for photon conversion r_м
- Oxygen mole quantum yield for the Z-scheme v_{i-i} Stoichiometric coefficient

Measurement of K by photosynthetic O2 production

300

 $(G-G_c)$ µmol_{in}m⁻²s⁻¹

1.2

0.8

100

£

r.02 0.6 0.4

-100

-0.2

-0.4 -0.6

Mean volumetric production (or consumption) rate <r> is deduced

 $\langle J_{\mathcal{O}_2} \rangle = \frac{1}{V_{\mathcal{R}}} \iiint_{V_2} dV$

 $< r_X > = \frac{< J_{O_2} > C_X M_X}{v_{O_2 - X}}$

Fomulation based on measurable or predictible parameters

PBR engineering and sizing

General engineering formula for PBR productivity

$$< s_{X} >_{\max} = (1 - f_{d}) \rho_{M} M_{X} \overline{\phi}'_{X} \frac{2\alpha}{1 + \alpha} K \ln \left[1 + \frac{q_{0}}{K} \right]$$
$$< r_{X} >_{\max} = (1 - f_{d}) \rho_{M} M_{X} \overline{\phi}'_{X} \frac{2\alpha}{1 + \alpha} a_{light} K \ln \left[1 + \frac{q_{0}}{K} \right]$$

Surface productivity of a given species is only a function of the PFD

Volumetric productivity can be increased by increasing PFD and/or specific illuminated to volume ratio (i.e. decreasing PBR depth):

Two-orders of magnitude can be covered with appropriate engineering !

The limit is from an engineering point of view → intensified PBR can only obtained with very thin systems (L < 1cm), ideally using high PFD

- 3 engineering parameters
- PFD (qo)
- Specific illuminated surface to volume ratio (a_{light} = S/V = 1/L)
- Non illuminated volume (f_{d=}0 for well-designed systems)

PBR engineering and sizing

Examples of validation : **Cornet and** Dussap, **Biotech.Progre** ss 2009

Engineering

rules are

actually available for

PBR scaling

Table 2. Comparison Between Experimental Productivities Obtained in Very Different Kinds of Photobioreactors Cultivating Arthrospira platensis and the Simple Formula (Eq. 22)

						Theoretical	
				Mean incident	Experimental	maximal	
	Geometry of the	Reactor type	Operating	photon flux	observed	productivity	
	reactor and lighting	and working	cultivation	density (PAR)	productivity	given by Eq. 22	Deviation
	characteristics	volume	condition	$(\mu mol_{hv} m^{-2} s^{-1})$	$(\text{kg m}^{-3} \text{ h}^{-1})$	$(\text{kg m}^{-3} \text{ h}^{-1})$	(%)
_	Rectangular, lightened by one side $a_{\text{light}} = 12.5$ m ⁻¹ ($f_d = 0$) Cylindrical, lightened by one side $a_{\text{light}} = 12.5$	PBR 1, 4 L	Batch	40	$(1.6 \pm 0.2) \times 10^{-3}$	1.8×10^{-3}	+12
(Batch	50	$(2.1 \pm 0.2) \times 10^{-3}$	2.4×10^{-3}	+14
			Batch	85	$(3.2 \pm 0.2) \times 10^{-3}$	3.5×10^{-3}	+9
		PBR 2, 5 L	Batch	130	$(2.6 \pm 0.2) \times 10^{-3}$	2.8×10^{-3}	+8
			Batch	260	$(4.7 \pm 0.4) \times 10^{-3}$	4.9×10^{-3}	+4
	$m^{-1}(f_d = 0)$		Batch	315	$(5.0 \pm 0.5) \times 10^{-3}$	5.4×10^{-3}	+8
	0u		Batch	365	$(5.3 \pm 0.5) \times 10^{-3}$	5.9×10^{-3}	+13
			Batch	520	$(7.1 \pm 0.7) \times 10^{-3}$	7.4×10^{-3}	+4
			Batch	575	$(7.2 \pm 0.7) \times 10^{-3}$	7.8×10^{-3}	+8
			Batch	730	$(9.5 \pm 0.8) \times 10^{-3}$	8.9×10^{-3}	-6
			Batch	840	$(1.1 \pm 0.1) \times 10^{-2}$	9.6×10^{-3}	-4
			Continuous	630	$(8.0 \pm 0.7) \times 10^{-3}$	8.3×10^{-3}	+4
			Continuous	1045	$(1.2 \pm 0.1) \times 10^{-2}$	1.1×10^{-2}	-8
			Continuous	1570	$(1.3 \pm 0.1) \times 10^{-2}$	1.3×10^{-2}	0
	Cylindrical, radially lightened $a_{\text{light}} = 25 \text{ m}^{-1} (f_{\text{d}} = 0)$	PBR 3, 5 L	Batch	245	$(1.3 \pm 0.1) \times 10^{-2}$	1.4×10^{-2}	+8
			Batch	620	$(1.9 \pm 0.2) \times 10^{-2}$	2.2×10^{-2}	+15
			Batch	1095	$(2.7 \pm 0.1) \times 10^{-2}$	2.8×10^{-2}	+4
			Batch	1590	$(3.3 \pm 0.5) \times 10^{-2}$	3.2×10^{-2}	-3
D/	Cylindrical, radially lightened a_{light} = 40 m ⁻¹ ($f_d = 0.48$)	PBR 4, 7 L	Continuous	235	$(1.0 \pm 0.1) \times 10^{-2}$	1.1×10^{-2}	+10
			Continuous	365	$(1.3 \pm 0.1) \times 10^{-2}$	1.4×10^{-2}	+7
			Continuous	625	$(1.7 \pm 0.2) \times 10^{-2}$	1.9×10^{-2}	+12
			Continuous	780	$(1.9 \pm 0.2) \times 10^{-2}$	2.1×10^{-2}	+10
	Oblate cylinder, lightened	PBR 5, 0.106 L	Batch	65	$(8.9 \pm 0.1) \times 10^{-3}$	9.5×10^{-3}	+7
	by one side $a_{\text{light}} =$						
	43.5 m ⁻¹ ($f_d = 0$)						
	Cylindrical, radially	PBR 6, 77 L	Batch	390	$(1.2 \pm 0.1) \times 10^{-2}$	1.3×10^{-2}	+8
	lightened alight		Continuous	525	$(1.4 \pm 0.2) \times 10^{-2}$	1.5×10^{-2}	+7
	$= 26.7 \text{ m}^{-1} (f_{\rm d} = 0.33)$		Continuous	840	$(1.7 \pm 0.2) \times 10^{-2}$	1.8×10^{-2}	+6
	(experimental results						
	from Refs. 31,32)						
	Annular and cylindrical, radially lightened a_{light}	PBR 7, 6 L	Batch	190	$(2.2 \pm 0.2) \times 10^{-2}$	2.0×10^{-2}	-10
			Batch	340	$(3.1 \pm 0.3) \times 10^{-2}$	2.8×10^{-2}	-10
	$= 40 \text{ m}^{-1} (f_{\rm d} = 0)$		Batch	530	$(4.1 \pm 0.3) \times 10^{-2}$	3.5×10^{-2}	-15
	Rectangular, lightened by	PBR 8, 0.5 L	Batch and continuous	33	$(3.3 \pm 0.3) \times 10^{-3}$	3.5×10^{-3}	+6
	one side a_{light}		Continuous	135	$(1.1 \pm 0.1) \times 10^{-2}$	1.0×10^{-2}	-10
	$= 25 \text{ m}^{-1} (f_{\rm d} = 0)$						
	(experimental results				4 = 0 (=		l

from Ref. 23)

Less than 15% deviation

Understanding and optimizing PBR technology

Investigation in fully-controlled PBR

Torus PBR for in-depth investigation

Flat panel PBR for simulated day/night cycles investigation

Hydrodynamics/gas-liquid mass transfer/thermal optimisation

Biological /metabolism studies

Modelling light-limited growth in photobioreactors

For maximal efficiency, photobioreactor are designed and operated to be physically limited by light (light-limited growth model is thus the a basis in photobioreactor engineering)

As a result, for a given geometry, photobioreactor efficiency is fully dependent on light supply: complex for solar technologies

Model-based PBR scaling

Solar PBR

DiCoFluv

Models for solar PBR

Increase of volumetric

AlgoFilm solar technology

Maximal productivity achieved (15days cultivation) : 6.0 kg.m⁻³d⁻

Expected fro (prior Alg developn 5.5kg/m

Strain : C.vulgaris 211-19

Specific area : 470 m².m⁻³

Culture thickness: 1.5 mm

		reemonogy	(kg.m ⁻	3.j ⁻¹)	productivity	
m models		Average radiation (µmol _{hn} .m ⁻² .s ⁻¹)	430	270	(with Algofilm technology)	
joFilm	15	Raceway pond	~ 0,1	~ 0,07	~60-80	
nent) : ³ .day		Conventional technology (a _{light} =20m ⁻¹)	~ 0,3 - 0,5	~ 0,2 - 0,35	~ 20	
		Algofilm (experimental results)	~ 6,1	- 5,7		

Intermediate conception: « Filter-press » PBR

(Predictive models: GEPEA-IP)

	Hector	PRIAM (Prototype)	PRIAM (Unité de production)	
Volume	130litres	11.6litres	130litres (ou plus)	
Surface éclairée	Surface éclairée 2.34m ²		60m ²	
Surface spécifique 18m²/m3 éclairée		515m ² /m3 réel (666m ² /m3 max)	515m ² /m3 réel (666m ² /m3 max)	
Volume par unité de surface	Olume par unité de55litres/m²urface		1.93litres/m ²	
Performance maximale	0.4kg/m3/j (50g/j) (PFD = 500µmole/m²/s)	5.5 kg/m3/j (60g/j) (PFD = 200µmole/m²/s)	5.5kg/m3/j (700g/j) (PFD = 200µmole/m²/s)	
Hector (GEPEA)		X15 (avec PFD / 2.5)		

Biofaçade project

Optimisation and integration of PBR in the bulilding = symbiosis

Demonstrator

Objectives

•Study in real conditions at industrial representative scale.

•Development and optimisation of the different steps of the process

•Microalgae production with industrial effluents (flue gas, wastewaters).

INFRASTRUCTURE

Production surface: 1500m² (350m² on greenhouse)
Biorefinery hall (240m²)
Innoculation room and analytical laboratory (100m²)

CULTURE PROCESS: 10 à 100m²

Closed raceways
 Intensified PBR

HARVESTING PROCESS

Preconcentration/concentration systems
Filtration and membrane separation
Centrifuges

BIOREFINERY

•Cell disruption •Extraction process •Fractioning process

BIOMASS CONDITIONING

Drying
 Lyophilation
 Congelation

Concluding remarks

In-depth control of PBR developed in the MELiSSA framework allows the set-up of knowledge models for:

PBR intensification

> New PBR conception

Specific application: biofaçades

