

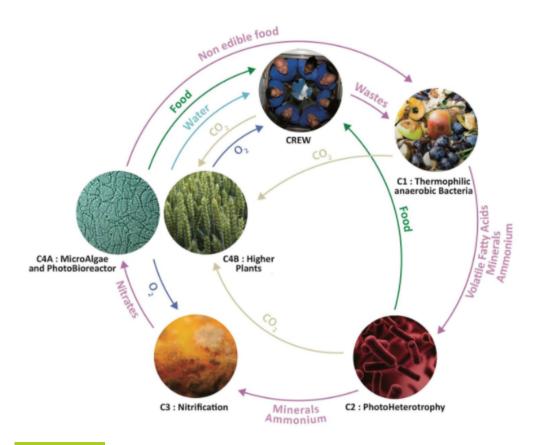
Monitoring microbiological quality and safety through diagnostics <u>The MIDASS experience</u>

Claude Mabilat, PhD

November 5

PIONEERING DIAGNOSTICS

REGENERATIVE LIFE SUPPORT SYSTEM TO SUPPORT LONG-TERM SPACE MISSIONS IS AN AMBITIOUS GOAL


MELiSSA aims at

 the use of wastes & light as a source of energy.

BIOMÉRIEU

- i.e. organic wastes and CO2,
- to support the production of food,
- to recover water
- to regenerate the atmosphere,

THE MELISSA PILOT: MASTERING MICROBIOLOGY (amongst other things...)

Microbiological <u>quality</u> is a must

BIOMÉRIEU

Microbiological <u>safety</u> is a must

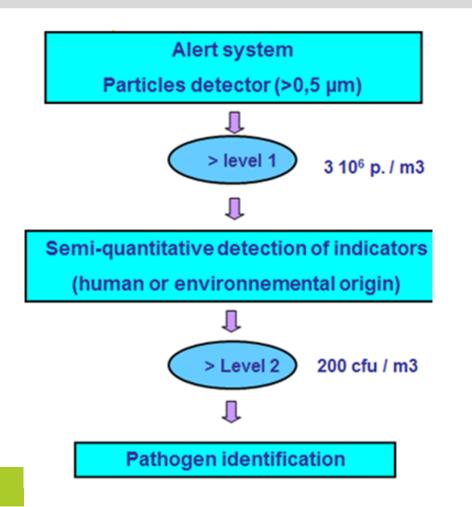
ENCOUNTER OF THE 3RD TYPE: WHEN ESA MEETS THE TERRESTRIAL INDUSTRY

Leveraging terrestrial know-how

LEVERAGING TERRESTRIAL KNOW-HOW

- Partner with a *in vitro* diagnostics (IVD) company
- Medical IVD (infectious diseases, metabolic disorder) : detect / measure / monitor the presence of disease-causing agents or substances from a body sample analysed *in-vitro*
- Industry IVD: idem from food, drug or air samples to assess the quality & safety of the production process and final product

DIAGNOSTIC SYSTEMS



Food matrix

The MIDASS project: <u>Mi</u>crobial <u>d</u>etection in <u>air system for space</u>

Objective:

develop a rapid, miniaturised, automated system for sampling and monitoring the microbiological quality of air and surfaces.

Based on molecular biology

- ESA applications (in-flight prototype)
 - Long-term: long-duration space flight: crew safety

and hardware integrity

bioMérieux applications (terrestrial prototype:

 Rapid air and surface monitoring to ensure safety of sterile pharmaceutical products *eg* vaccines

Shared benefits:

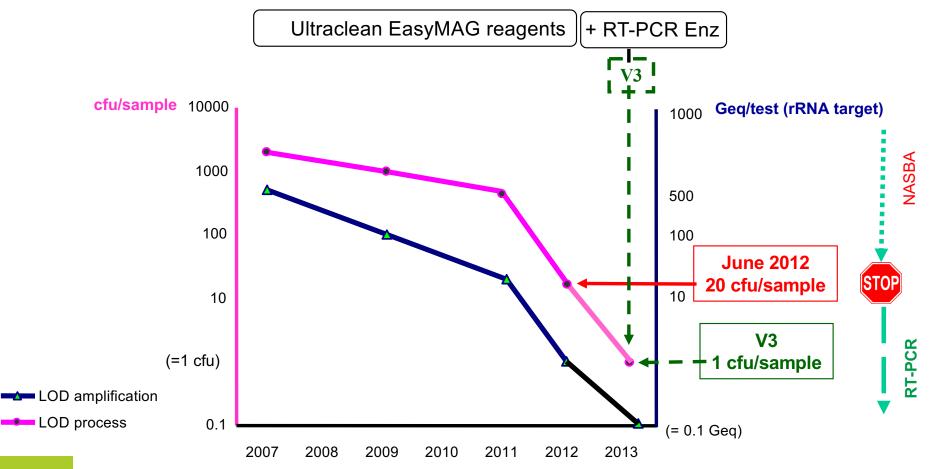
bioMérieux's expertise in IVD systems development and manufacturing
ESA's drive for a technological breakthrough

Whereas sharing technological and financial risks

Started 2001

MIDASS requirements / challenges

- Design a complete solution fitting customer's needs (ESA and Sterile Pharmaceutical production)
- Design a routine workflow of a complex protocol (ca. 100 steps)
- Achieve routine performances for an innovative test (all bacteria/all fungi):
 - Sensitivity: 1 cfu/sample (1 M³)
 - Quantification: 3-log dynamic range
 - No false-positives: ultra-clean reagents (free of nucleic acids)
- Obtain recognition for a non-culture based interpretation tool
- Reach profitable cost of goods for reagents



BIOMÉRIEU

Terrestrial demonstrator delivered in 2014

MIDASS microbiological achievement

MIDASS for space: successful PDR in 2014

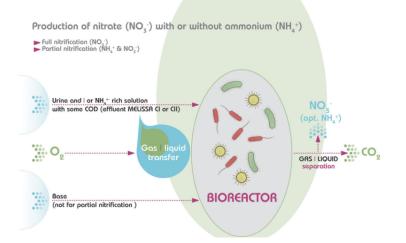
Core of MIDASS system

Solution retained: Materialized prototype

Functions:

- 1. Air impaction (future apps: surfaces, water)
- 2. Bacteria, yeasts and mould lysis
- 3. Nasba amplification of targetspecific RNA
- 4. Real time fluorescence detection

Leverage MIDASS for



MELISSA MICROBIOLOGICAL CONTROL REQUIREMENTS

- Genetic stability of strains and plants (Ground and Space environment) during long-term mission
- Axenicity of the microbial processes:
 - CII: Rhodospirillum rubrum S1H ATCC25903
 - CIII Nitrobacter winogradskyi / Nitrosomonas europea
 - CIVa: Arthrospira sp. PCC8005

• Microbial control of the environment

 Life Support System should not contaminate the crew and the environment

TRANSLATION IN THE MPP FACILITY

Define an ideal scenario of environmental monitoring within the MPP facilities: a sampling plan (critical points frequency...etc) including

Environmental monitoring of Air & Surface in MPP facilities : MiDASS

- surface of compartments, mainly CII and CIII
- Check ISO 7 spec is OK : detect < 1h30 more of less than 100 cfu / 25 cm2, quantitative monitoring
- Extend to testing air confined around Melissa compartments

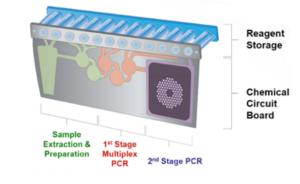
Compartments (including reactors) & their interfaces

• purity of ferments, no contamination, no genetic drifts

MPP Utilities

Consumables (Medium...etc)

THEN OUR COMMON PATH DIVERGED...

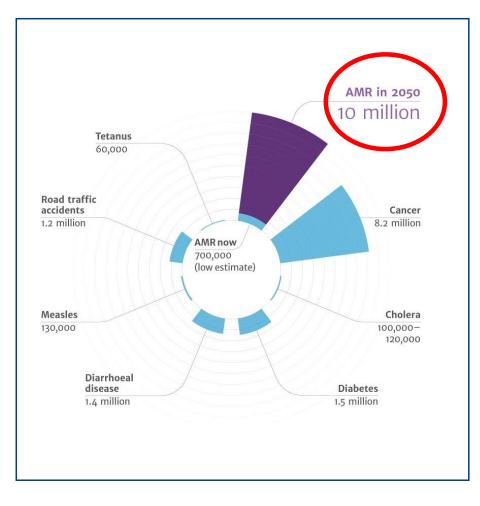

- The industry division in charge of the terrestrial changed its priorities
- But at the same time the medical division leverage the MELISSA know-how to buy a US company having matured a similar concept for medical applications

ESA

- After PDR (TRL 5), the project was transferred to another division where perception of the microbiological risk was low
- Did not nurture enough the relationship to have the industry division keep this project
- Did not react at the same pace for decision-making

BIOMÉRIEU

LIFE SUPPORT SYSTEMS SHOULD INCLUDE THE RISK OF MICROBIOLOGICAL ANTIBIOTIC RESISTANCE

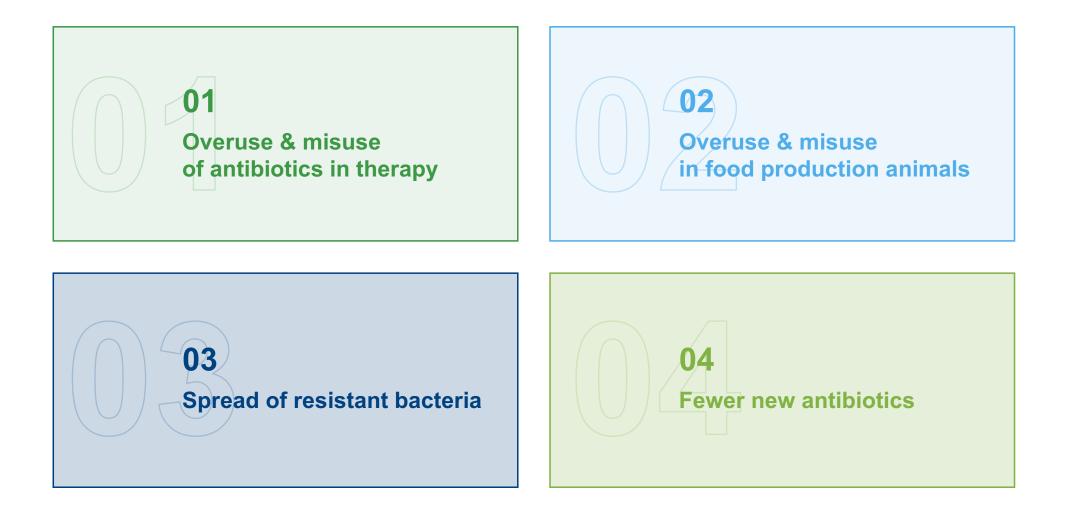


- Active Microbial biomass on board
- Mutants can be selected and enriched when populations are subject to constraints (physical, chemical,...)
- Including antibiotics
- Closed systems: increased risk

ANTIMICROBIAL RESISTANCE (AMR) IS A GLOBAL PUBLIC HEALTH CONCERN

10 MILLION DEATHS

annually could be attributable to AMR in 2050, more than cancer (8.2 million)¹

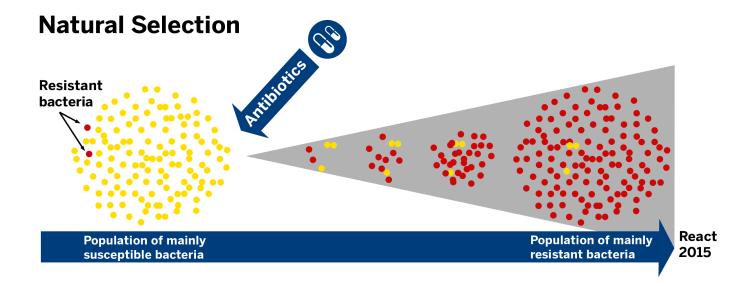

AMR DRIVERS

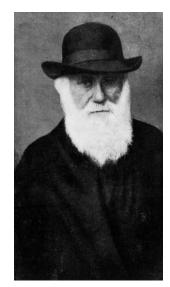
are well-known and can be acted upon:

1 Jim O'Neill. 2016. Tackling drug-resistant infections globally: final report and recommendations, the Review on Antimicrobial Resistance.

HOW DID WE GET THERE?

W.H.O. PRIORITY LIST OF RESISTANT ORGANISMS NEEDING NEW ANTIBIOTICS


Priority 1: CRITICAL	Priority 2: HIGH	Priority 3: MEDIUM
 Acinetobacter baumannii, carbapenem-resistant 	 Enterococcus faecium, vancomycin-resistant 	 Streptococcus pneumoniae, penicillin-non-susceptible
 Pseudomonas aeruginosa, carbapenem-resistant 	 Staphylococcus aureus, methicillin-resistant, vancomycin- intermediate and resistant 	 Haemophilus influenzae, ampicillin-resistant
 Enterobacteriaceae, carbapenem-resistant, ESBL-producing 	 Helicobacter pylori, clarithromycin-resistant 	 Shigella spp., fluoroquinolone-resistant
	 Campylobacter spp., fluoroquinolone-resistant 	
	 Salmonellae, fluoroquinolone-resistant 	
	 Neisseria gonorrhoeae, cephalosporin-resistant, fluoroquinolone-resistant 	



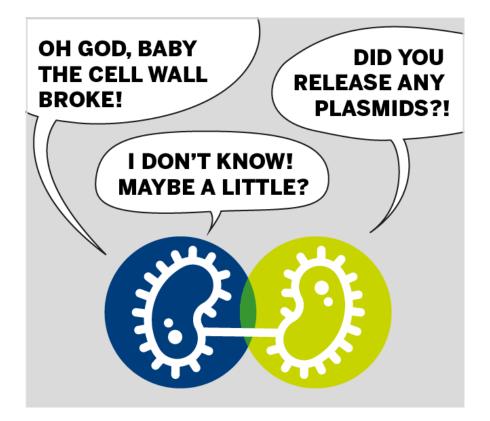
1. ANTIBIOTICS SELECT RESISTANT BACTERIA

Natural selection by antibiotics

Spontaneous mutations in the bacterial DNA may lead to resistance. Antibiotics select such resistant mutants. Antibiotic resistance appeared before man: e.g. beta-lactamases originated 2 billion years ago ¹

Darwin

2. RESISTANCE DETERMINANTS CAN BE TRANSFERRED



Through horizontal gene transfer to other neighboring bacteria, *e.g.*. in the human gut.

The genetic support of resistance (plasmid, transposons) can disseminate very easily.

 \diagdown

High epidemic potential

3. THE 'SPACE-CIFITY' OF ANTIMICROBIAL RESISTANCE

• A pool of humans

- having their own microbiota (gut flora, skin..)
- Potentially reduced immune defences (space, stress)

A pool of bacteria, fungi

• A pool of antibiotics

restricted on-board pharmacy

Spatial opportunities for interactions

- A closed environment with compartments favoring interactions (digestive tract, Melissa, water recycling)
- Space conditions (radiations, μ gravity: ^{*}biofilms & resistance)

Temporal opportunities for interactions

long-haul flights

Risk assessment for selection and dissemination of resistant organisms

POTENTIAL USE-CASES

1. An astronaut having been exposed to the same class of antibiotic within the previous 6 months

e.g. oral fluoroquinolones : can select resistant *Enterobacterales* in urinary tract infections or other

- as classically seen with older people
- need to perform an antibiotic susceptibility testing to switch antibiotic,
- need to know the local ecology of resistance

colonized with a resistant organism:room for opportunistic infection, or for onboard dissemination

Mitigation: pre-boarding screening for astronauts for MDROs: MRSA, VRE, ESBL

POTENTIAL USE-CASES

1. An astronaut having been exposed to the same class of antibiotic within the previous 6 months

e.g. oral fluoroquinolones : can select resistant *Enterobacterales* in urinary tract infections or other

- as classically seen with older people
- need to perform an antibiotic susceptibility testing to switch antibiotic,
- need to know the local ecology of resistance

2. Recycled water could concentrate active antibiotics from urine

 colonized with a resistant organism:
 room for opportunistic infection, or for onboard dissemination

Mitigation: pre-boarding screening of astronauts for MDROs: MRSA, VRE, ESBL, microbiota sequencing

Same water used in iterative Melissa loops could select resistant organisms, transfer them in the final compost: environment & food contamination

TAKE-HOME MESSAGES

- Life support systems are key to support long-haul space flights
- It comes at the price of mastering the microbiological risk, especially for with high biomass fermenters like Melissa
- Terrestrial applications are a very good learning tool as well as offering disruptive innovations for a sustainable planet. Agility to partner with terrestrial industry is key.
- Antimicrobial resistance should no be underestimated in long-haul flights

PIONEERING DIAGNOSTICS