
P I O N E E R I N G D I A G N O S T I C S

Monitoring microbiological quality and safety through diagnostics 

The  MIDASS experience

Claude Mabilat, PhD

November 5



2

MELiSSA aims at 
• the use of wastes & light as a source of 

energy. 
- i.e. organic wastes and CO2, 

• to support the production of food, 
• to recover water 
• to regenerate the atmosphere,

REGENERATIVE LIFE SUPPORT SYSTEM TO SUPPORT 
LONG-TERM SPACE MISSIONS IS AN AMBITIOUS GOAL
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Microbiological quality is a must

Microbiological safety is a must 

THE MELISSA PILOT: MASTERING MICROBIOLOGY 
(amongst other things…)

KNOWLEDGE TOOLS 
ARE ESSENTIAL:

= monitoring / diagnostics
Physical, chemical, microbiological
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ENCOUNTER OF THE 3RD TYPE: 
WHEN ESA MEETS THE TERRESTRIAL INDUSTRY

Leveraging terrestrial know-how 
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Partner with a in vitro diagnostics (IVD) company

Medical IVD ( infectious diseases, metabolic disorder) : detect / measure / monitor the presence of 
disease-causing agents or substances from a body sample analysed in-vitro 

Industry IVD:  idem from food, drug or air samples to assess the quality & safety of the production 
process and final product

LEVERAGING TERRESTRIAL KNOW-HOW

DIAGNOSTIC SYSTEMS

Blood Urine

INSTRUMENTS SERVICE

S

REAGENTS SOFTWARE

Food matrix System 
Approach:
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The MIDASS project: 
Microbial detection in air system for space

Objective: 
develop a rapid, miniaturised, automated system for sampling 
and monitoring the microbiological quality of air and surfaces.

Based on molecular biology

§ESA applications (in-flight prototype)

§ Long-term: long-duration space flight: crew safety 

and hardware integrity 

§bioMérieux applications (terrestrial prototype:

§ Rapid air and surface monitoring to ensure safety 

of sterile pharmaceutical products eg vaccines

Shared benefits:
§bioMérieux’s expertise in IVD systems development and manufacturing
§ESA’s drive for a technological breakthrough
§Whereas sharing technological and financial risks

Started 2001
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MIDASS requirements / challenges

Terrestrial demonstrator
delivered in 2014

§ Design a complete solution fitting customer's needs (ESA and 
Sterile Pharmaceutical production)

§ Design a routine workflow of a complex protocol (ca. 100 steps)
§ Achieve routine performances for an innovative test (all 

bacteria/all fungi): 
• Sensitivity: 1 cfu/sample (1 M3)

• Quantification: 3-log dynamic range

• No false-positives: ultra-clean reagents (free of nucleic acids)

§ Obtain recognition for a non-culture based interpretation tool

§ Reach profitable cost of goods for reagents
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MIDASS microbiological achievement
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MIDASS for space: successful PDR in 2014

Leverage MIDASS for MELISSA:



10

Genetic stability of strains and plants (Ground and 
Space environment) during long-term mission

• Axenicity of the microbial processes:
• – CII: Rhodospirillum rubrum S1H ATCC25903

• – CIII Nitrobacter winogradskyi / Nitrosomonas europea
• – CIVa: Arthrospira sp. PCC8005

• Microbial control of the environment
• Life Support System should not contaminate the crew 

and the environment

MELISSA ΜICROBIOLOGICAL CONTROL REQUIREMENTS
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Define an ideal scenario of environmental monitoring within the MPP facilities: a sampling 
plan (critical points frequency…etc) including

Environmental monitoring of Air & Surface in MPP facilities : MiDASS
• surface of compartments, mainly CII and CIII

• Check ISO 7 spec is OK : detect < 1h30 more of less than 100 cfu / 25 cm2, quantitative monitoring
• Extend to testing air confined around Melissa compartments

Compartments (including reactors) & their interfaces
• purity of ferments, no contamination, no genetic drifts

MPP Utilities

Consumables (Medium…etc)

TRANSLATION IN THE MPP FACILITY

Lysis 
+ NA purif

RT-PCR

+ 
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bioMerieux 
• The industry division in charge of the terrestrial changed its 

priorities
• But at the same time the medical division leverage the 

MELISSA know-how to buy a US company having matured a 
similar concept for medical applications

ESA
• After PDR (TRL 5),  the project was transferred to another 

division where perception of the microbiological risk was low
• Did not nurture enough the relationship to have the industry 

division keep this project 
• Did not react at the same pace for decision-making

THEN OUR COMMON PATH DIVERGED…
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Active Microbial biomass on board

Mutants can be selected and 
enriched when populations are 
subject to constraints (physical, 
chemical,…) 

Including antibiotics 

Closed systems: increased risk

LIFE SUPPORT SYSTEMS SHOULD INCLUDE THE RISK OF 
MICROBIOLOGICAL ANTIBIOTIC RESISTANCE



ANTIMICROBIAL RESISTANCE (AMR) IS A GLOBAL PUBLIC HEALTH CONCERN

10 MILLION DEATHS 
annually could be attributable to AMR 
in 2050, more than cancer (8.2 million)1

1 Jim O’Neill. 2016. Tackling drug-resistant infections globally: final report and recommendations, the Review on Antimicrobial Resistance.

AMR DRIVERS 
are well-known and can be acted upon:



HOW DID WE GET THERE?

01
Overuse & misuse 
of antibiotics in therapy

02
Overuse & misuse 
in food production animals

04
Fewer new antibiotics

03
Spread of resistant bacteria



16

W.H.O. PRIORITY LIST OF RESISTANT 
ORGANISMS NEEDING NEW ANTIBIOTICS

Priority 1: CRITICAL Priority 2: HIGH Priority 3: MEDIUM

§ Acinetobacter baumannii, 
carbapenem-resistant

§ Pseudomonas aeruginosa, 
carbapenem-resistant

§ Enterobacteriaceae, 
carbapenem-resistant, 
ESBL-producing

§ Enterococcus faecium, 
vancomycin-resistant

§ Staphylococcus aureus, 
methicillin-resistant, vancomycin-
intermediate and resistant

§ Helicobacter pylori, 
clarithromycin-resistant

§ Campylobacter spp., 
fluoroquinolone-resistant

§ Salmonellae, 
fluoroquinolone-resistant

§ Neisseria gonorrhoeae, 
cephalosporin-resistant, 
fluoroquinolone-resistant

§ Streptococcus pneumoniae, 
penicillin-non-susceptible

§ Haemophilus influenzae, 
ampicillin-resistant

§ Shigella spp., 
fluoroquinolone-resistant

Source: WHO 2017
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1. ANTIBIOTICS SELECT RESISTANT BACTERIA

Natural selection by antibiotics
Spontaneous mutations in the bacterial DNA may lead to resistance. 
Antibiotics select such resistant mutants. 
Antibiotic resistance appeared before man: e.g. beta-lactamases originated 2 billion years ago 1

Darwin
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Through horizontal gene transfer to other neighboring bacteria, e.g..
in the human gut.

. 

2. RESISTANCE DETERMINANTS CAN BE TRANSFERRED

The genetic support of resistance (plasmid, 
transposons) can disseminate very easily.

High epidemic potential
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A pool of humans 
• having their own microbiota (gut flora, skin..)
• Potentially reduced immune defences (space, stress) 

A pool of bacteria, fungi 

A pool of antibiotics
• restricted on-board pharmacy

Spatial opportunities for interactions
• A closed environment with compartments favoring interactions 

(digestive tract, Melissa, water recycling)
• Space conditions (radiations, µ gravity:   biofilms & resistance)

Temporal opportunities for interactions 
• long-haul flights

3. THE ‘SPACE-CIFITY’ OF ANTIMICROBIAL RESISTANCE

Risk assessment
for selection and 
dissemination of 

resistant organisms



20

colonized with a resistant organism:    
room for opportunistic infection, or for on-
board dissemination

Mitigation: pre-boarding screening for astronauts for 
MDROs: MRSA, VRE, ESBL

POTENTIAL USE-CASES

1. An astronaut having been exposed
to the same class of antibiotic within
the previous 6 months

e.g. oral fluoroquinolones : can select resistant
Enterobacterales in urinary tract infections or 
other

- as classically seen with older people

- need to perform an antibiotic susceptibiity testing to 
switch antibiotic, 

- need to know the local ecology of resistance
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colonized with a resistant organism:    
room for opportunistic infection, or for on-
board dissemination

Mitigation: pre-boarding screening of astronauts for 
MDROs: MRSA, VRE, ESBL, microbiota sequencing

Same water used in iterative Melissa loops 
could select resistant organisms, transfer 
them in the final compost: environment & 
food contamination

POTENTIAL USE-CASES

1. An astronaut having been exposed
to the same class of antibiotic within
the previous 6 months

e.g. oral fluoroquinolones : can select resistant
Enterobacterales in urinary tract infections or 
other

- as classically seen with older people

- need to perform an antibiotic susceptibiity testing to 
switch antibiotic, 

- need to know the local ecology of resistance

2. Recycled water could concentrate
active antibiotics from urine
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TAKE-HOME MESSAGES

Life support systems are key to support long-haul space flights

It comes at the price of mastering the microbiological risk, especially for 
with high biomass fermenters like Melissa

Terrestrial applications are a very good learning tool as well as offering 
disruptive innovations for a sustainable planet. Agility to partner with 
terrestrial industry is key.

Antimicrobial resistance should no be underestimated in long-haul flights



PIONEERING DIAGNOSTICS


