LABORATORY FOR INDUSTRIAL WATER AND ECOTECHNOLOGY (LIWET)

Rui Zhang, Xander Termonia, Diederik Rousseau,Stijn Van Hulle

POLISHING GOAT FARM WASTE WATER IN VIEW OF ADVANCED PHOSPHATE REMOVAL

The objective of this study is to fully characterise a waste substrate from drinking water industry (IOS) in view of P removal and recovery in lab and field scale.

Lab Test

(a) adsorption kinetics model fit and (b) Weber-Morris (WB) intraparticle diffusion model fits

P adsorption breakthrough curve using (a) Bohart-Adams model fit and (b) BDST model fit

Characterization and Field Test

SEM micrographs (a) pristine IOS and (b) after adsorption (used IOS)

Adsorbent characterisation results in (a) FT-IR spectra and (b) XRD spectra

Conclusion

- IOS gives nearly 100% TP removal efficiency within a wide pH range (2-9) which was much better than the other materials
- SEM and EDS showed that the surface of IOS has become rough after adsorption and Si and Ca was released in the process of P adsorption.
- FTIR and XRD results showed that the active sites of IOS remained almost unchanged which means the potential good reusability of IOS.
- In a regeneration and reusability test, KOH gave better results than NaOH , and IOS can remain above 70% adsorption capacity after five adsorption/desorption cycles.
- BDST and Bohart-Adams model were used to predict breakthrough curve from lab scale to field scale
- The designed granular filter as a polishing step of goat farm constructed wetland system has kept TP below $0.2 \mathrm{mg} / \mathrm{L}$ for more than 180 days
- IOS is a promising, ecological material which can be widely used in decentralized wastewater treatment for Premoval

Contact	
Rui.Zhang@ugent.be www.ugent.be/research/liwet	
	Universiteit Gent
	@ugent
	Ghent University

UNIVERSITEIT GENT
CAMPUS KORTRJK

