

Effectiveness of Bacterial Amendments on Lettuce Performance Inside a Plant Factory with Artificial Lighting

<u>Thijs Van Gerrewey</u>, Maarten Vandecruys, Nele Ameloot, Maaike Perneel, Marie-Christine Van Labeke, Nico Boon, and Danny Geelen

M ELESS A

Plant Factory with Artificial Lighting (PFAL)

- PFALs maximize plant growth in a resource use efficient way.
- Obstacles:
 - 1. Pests and diseases.
 - \rightarrow Improve PFAL system robustness.
 - 2. Expensive.
 - → PFALs only for niche markets (geographical niches and value chain models).
- Niches need to be expanded:
 - 1. Engineering improvement.
 - \rightarrow Reaching its limits.
 - 2. Plant biology (e.g. breeding).
 - $\rightarrow~$ Microbe-assisted cultivation.

Urban Crop Solutions, Waregem, Belgium

- PFALs utilize soilless culture methods which typically require a plant growing medium (e.g. peat plugs).
- Peat:
 - Widely used.
 - Sustainability and environmental concerns.
 - Expanding world population \rightarrow increase in demand for plant growing media.
- Development of sustainable peat alternatives (e.g. coir pith, wood fiber, composts, biochar).
- Peat will remain essential.

- Little attention given to the microbial properties when selecting new plant growing media.
- Microbial inoculation can enhance plant performance.
- Plant growing medium composition may be a determining factor in the successful amendment of bacteria.
- Use of plant growing media as a substrate for bacterial amendments.

Materials and Methods Collection of Root-Associated Bacterial Communities

Table 1. Overview of Rhizosphere Sampling Locations.

Sample	Collection Date	Location	Crop	Cultivation Method	Plant Growing Medium
S1	03-Oct- 2017	Wachtebeke, Belgium	Lactuca sativa var. crispa (oakleaf)	Organic open field	Sand
S2	17-Oct- 2017	Moerbeke- Waas, Belgium	Lactuca sativa var. crispa (oakleaf)	Organic open field	Loamy sand
S3	21-Nov- 2017	Onze-Lieve- Vrouw-Waver, Belgium	Lactuca sativa var. crispa (lollo bionda)	Soilless	Black peat
S4	12-Dec- 2017	Ardooie, Belgium	Lactuca sativa var. capitata (butterhead)	Soilless	Black peat
S5	05-Jun- 2018	Lochristi, Belgium	Lactuca sativa var. crispa (lollo bionda)	Organic open field	Sand

Positive control: Bacillus sp.

Materials and Methods Plant Growing Media Composition

Table 2. Composition of Plant Growing Media. Each plant growing medium consists of 4 raw material groups at different volume per volume (% v/v).

Plant Growing Medium	Peat (60% <i>v/v</i>)	Other Organics (20% v/v)	Composted Materials (10% v/v)	Inorganic Materials (10% v/v)
M1	white peat	coir pith	bark	perlite
M2	white peat	wood fiber	bark	perlite
M3	black peat	coir pith	bark	sand
M4	white peat	coir pith	green waste	perlite
M5	white peat	wood fiber	bark	sand
M6	white peat	coir pith	bark	sand
M7	black peat	wood fiber	bark	perlite
M8	black peat	coir pith	green waste	sand
M9	white peat	wood fiber	green waste	sand
M10	black peat	wood fiber	green waste	perlite

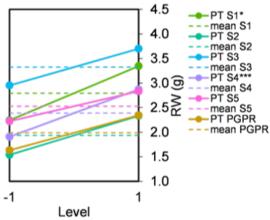
Positive control: commercial plant growing medium (75% peat and 25% coco coir).

Materials and Methods Plant Growth and Inoculation

- Batavia lettuce was sown in each plant growing medium (M1-10).
- Two weeks after sowing:
 - Inoculation with the bacterial community inocula (BCI \$1-5) and positive control (PGPR) at a dose of 3.2 × 10⁹ CFU/L.
 - Non-inoculated negative control (C).
 - Transfer to PFAL.
- Harvest three weeks after inoculation.

Materials and Methods Plant Sample Analysis

- Yield and quality analysis:
 - Shoot fresh weight (FW)
 - Lettuce head area (LHA)
 - Root fresh weight (RW)
 - Shoot dry weight (DW)
 - Total phenolic content (TPC)
 - NO₃-content
 - Leaf pigments
- Fractional factorial analysis (DOE)
- Principal component analysis (PCA)



Results and Discussion Plant Growing Medium Constituents Have Differing Effects on Lettuce Performance

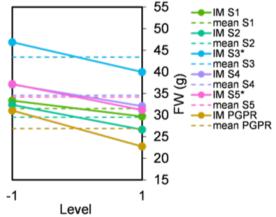

- 1. Changing black peat to white peat increased RW:
 - Higher air volume in white peat mixtures improved the rooting of lettuce.

Figure 1. Main effect of peat on root fresh weight (RW; g) under different bacterial treatments (S1–5 and positive control PGPR). Peat (PT; -1 = black peat and 1 = white peat). Dashed lines indicate mean levels of RW for each bacterial treatment. Asterisks indicate level of significance: P < 0.05 (*), P < 0.01 (**) and P < 0.001 (***).

- 2. Perlite increased FW compared to sand (and LHA, RW):
 - Higher air volume and water capacity in plant growing media amended with perlite.

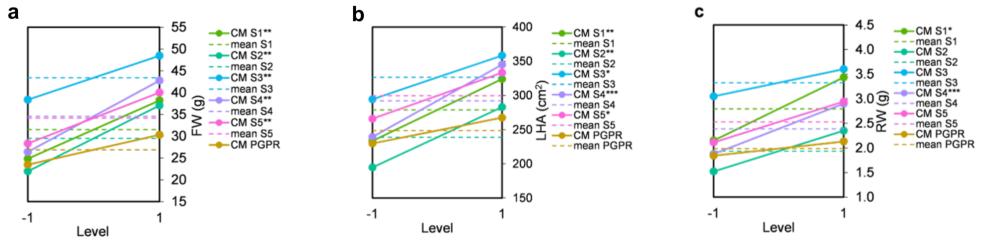
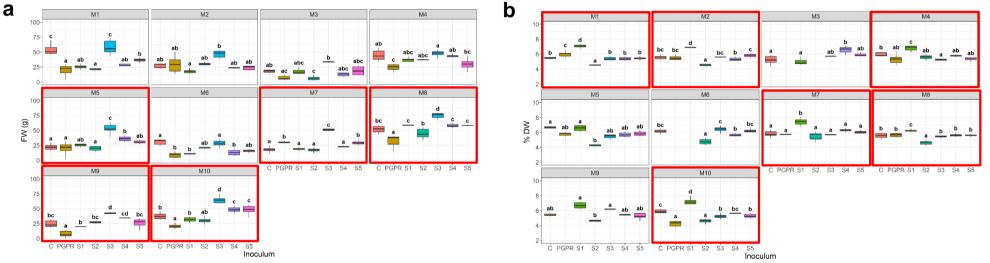


Figure 2. Main effects of inorganic materials on shoot fresh weight (FW; g) under different bacterial community inoculum treatments (S1–5 and positive control PGPR). Inorganic materials (IM; –1 = perlite and 1 = sand). Dashed lines indicate mean levels of FW for each bacterial treatment. Asterisks indicate level of significance: *P* < 0.05 (*), *P* < 0.01 (**) and *P* < 0.001 (***).

Results and Discussion Plant Growing Medium Constituents Have Differing Effects on Lettuce Performance

- 3. Green waste compost significantly increased lettuce growth (FW, LHA, RW):
 - The increased availability of salts, and especially K⁺, was advantageous for lettuce growth.

Figure 3. Main effects of composted materials on (a) shoot fresh weight (FW; g), (b) lettuce head area (LHA; cm²), and (c) root fresh weight (RW; g) under different bacterial community inoculum treatments (S1–5 and positive control PGPR). Composted materials (CM; -1 = composted bark and 1 = green waste compost). Dashed lines indicate mean levels of FW for each bacterial treatment. Asterisks indicate level of significance: P < 0.05 (*), P < 0.01 (**) and P < 0.001 (***).

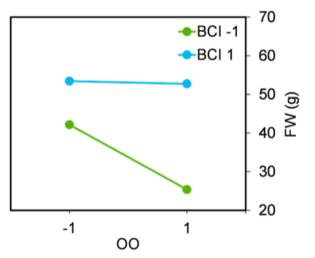


Results and Discussion

Microbe-Plant Growing Medium Interactions Determine Plant Performance

- The interaction between BCI and plant growing medium affected all plant performance parameters.
- BCI \$1 and \$3 positively affected plant performance depending on plant growing medium composition.

Figure 4. Boxplot of (a) shoot fresh weight (FW; g) and (b) shoot dry weight (%DW) grouped per plant growing medium. Letters show comparison of BCI means per plant growing medium at the 95% confidence level. S indicates the bacterial community inoculum, M indicates the plant growing medium, C indicates the negative control treatment without addition of inoculum, and PGPR indicates the positive control treatment with a *Bacillus* sp. inoculum. Number of plants \geq 3.



Results and Discussion Microbe-Plant Growing Medium Interactions Determine Plant

Performance

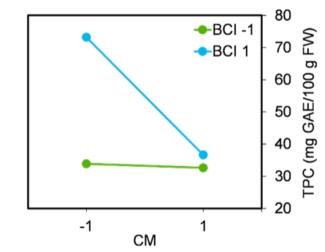
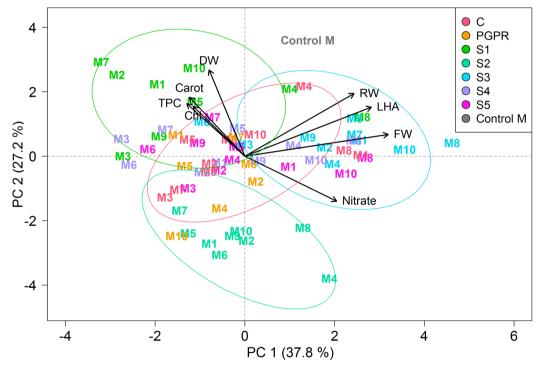

1. BCI \$3 and other organics interaction effect on FW:

Figure 5. Interaction effect between other organics (OO; -1 = coir pith and 1 = wood fiber) and BCI S3 (-1 =C and 1 = S3) on shoot fresh weight (FW; g) (P = 0.024).

2. BCI \$1 and composted materials interaction effect on TPC:

Figure 6. Interaction effect between composted materials (CM; - 1 = bark compost and 1 = green waste compost) and BCI S1 (-1 = C and 1 = S1) (P = 0.001) on total phenolic content (TPC; mg GAE/100 g FW) under BCI S1 treatment.



Results and Discussion

The Bacterial Source Determines Plant Performance

- Bacterial amendment resulted in different effects on plant performance depending on the bacterial source.
- PCA analysis showed a grouping of BCIplant growing medium combinations.
- The BCIs were collected at separate locations with different cultivation method, fertilizer management, soil type, crop species, etc. which shaped the community.
- A complex bacterial community is a driver for successful bacterial amendment.

Figure 7. PCA biplot of the lettuce yield and quality variables under different BCI-plant growing medium treatments.

- Plant growing medium composition determines plant performance.
- Bacterial amendment is a key driver affecting plant performance.
- The effectiveness of bacterial amendment depends on the bacterial source and on its interaction with the plant growing medium.
- Potential in using bacterially enhanced plant growing media to modulate plant performance and improve PFAL and MELiSSA system robustness.
- Further research will focus on the rhizosphere bacterial community structure.

agronomy

Microbe-Plant Growing Media Interactions Modulate the Effectiveness of Bacterial Amendments on Lettuce Performance Inside a Plant Factory with Artificial Lighting

by ℓ Thijs Van Gerrewey ^{1,2,3,4} ⊠ ^(b), ℓ Maarten Vandecruys ³ ⊠ ^(b), ℓ Nele Ameloot ⁴ ⊠, ℓ Maaike Perneel ⁵ ⊠, ℓ Marie-Christine Van Labeke ⁶ ⊠, ℓ Nico Boon ² ⊠ and ℓ Danny Geelen ^{1,*} ⊠ ^(b)

¹ Horticell, Ghent University, Coupure Links 653, B-9000 Gent, Belgium

² Center for Microbial Ecology & Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium

- ³ Urban Crop Solutions BVBA, Grote Heerweg 67, B-8791 Beveren-Leie (Waregem), Belgium
- ⁴ Agaris Belgium NV, Skaldenstraat 7a, B-9042 Gent, Belgium
- ⁵ Cropfit, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
- ⁶ Horticultural Sciences & Crop Physiology, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
- * Author to whom correspondence should be addressed.

Agronomy 2020, 10(10), 1456; https://doi.org/10.3390/agronomy10101456

Received: 22 August 2020 / Revised: 20 September 2020 / Accepted: 21 September 2020 / Published: 23 September 2020

https://doi.org/10.3390/agronomy10101456

Thijs Van Gerrewey Ph.D. Candidate at Ghent University and Project Engineer R&D at Urban Crop Solutions

thijs.vangerrewey@ugent.be thva@urbancropsolutions.com

www.horticell.ugent.be www.cmet.ugent.be www.urbancropsolutions.com www.agaris.com

PARTNERS

