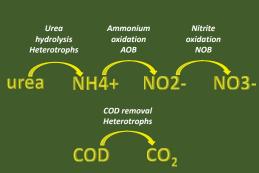


<u>Continuous nitrification of artificial urine with a bacterial</u> <u>co-culture in a packed-bed bioreactor</u>


Justyna Barys^{1,2,3}, Christel Paille¹, Carolina Arnau², Frances Godia², Nico Boon³, Siegfried Vlaeminck^{3,4}, Peter Clauwaert³

⁻¹ Life & Physical Sciences and Life Support Laboratory, European Space Research and Technology Centre, European Space Agency, The Netherlands, ²MELISSA Pilot Plant – Laboratory Claude Chipaux, Universitat Autònoma de Barcelona, Spain, ³ Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Universiteit Gent, Belgium, ⁴Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, Faculty of Science, University of Antwerp, Belgium

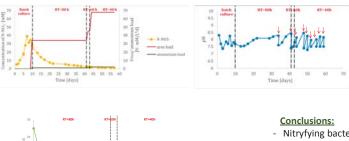
Introduction

MELiSSA aims at producing food via vegetable crops and edible phototrophic bacteria. To produce phototrophic biomass conversion of urine into a nitrate substrate should be achieved.

For converting urea into nitrate, it will be necessary to use a bacterial consortium composed of strains allowing urea hydrolysis, ammonium and nitrite oxidation. Additionaly selected bacterial consortium shall oxidzize COD content. Cell immobilization on a solid support is particularly interesting for nitrification purposes, as nitrifiers are slow growing microorganisms.

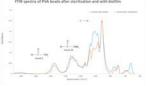
Advantages of biofilm growth in the bioreactor:

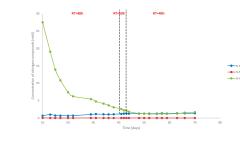
- Cell retention in the bioreactor
- Easy continous operation
- Attached growth more compatible with Space conditions



The main goal of the conducted research is to develop a defined microbial consortium to nitrify synthetic urine in the continuous system based on immobilized cells in a packed-bed bioreactor.

Results


Continous culture of *N. europaea*, *N. winogradskyi* and *C. pinatubonensis* (heterotroph) with PVA gel bioreactor beads;


used media – AOB/NOB medium with urea instead of ammonium sulphate

Batch culture of *N. europaea* and *N. winogradskyi* with PVA gel bioreactor beads

- Nitryfying bacteria can form biofilm on PVA gel bioreactor beads
- PVA gel bioreactor beads are good material for nitryfying biofilm formation, but cannot be sterilized in 121°C in dry conditions
- Increase of pH during bacterial cultivation can indicate urea hydrolysis, but also CO₂ stripping
- Stabilisation of nitrate contentration can indicate that *N. europaea* and *N. winogradskyi* were active in the culture
- Need to estabilish new bacterial consortium and new composition of synthetic urine medium to improve urea to nitrate transformation efficiency

Future tests

Taking as a basis these preliminary results, a more systematic work was planned in order with the final target to test it in the MELISSA Pilot Plant:

- a) Selection of the optimal defined microbial consortium
- b) Definition of synthetic urine medium composition
- c) Selection of an autoclavable, non-compressible biofilm carrier supporting good biofilm development
- d) Preliminary tests in the bench scale packed-bed bioreactors

Porous glass

Denstone Delt