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ABSTRACT 

A number of curve fitting methods were evaluated for their applicability in modeling plant canopy photosynthetic 
dynamics and responses to environment variables. Non-Parametric and Non-Linear models were applied to long term 
dynamics in photosynthesis and response surfaces relating photosynthesis and yield to crop age, light intensity and 
CO2 concentration. Models were developed for leafy crops including lettuce and beet. All models performed well, but 
computational details in the non-linear least squares algorithm made the simpler, non-parametric model forms more 
attractive. Applications of these modeling techniques are addressed in the context biomass production research and 
in the assessment of air revitalization capacity for bioregenerative life support.  

INTRODUCTION 

Bioregenerative life support (BLS) system design depends on accurate models of crop growth. Such models may 
allow for the simplified representation of crop phenology and physiology in closed environments. As such, these 
models are of use in the systems level modeling of any BLS dynamic which is coupled to crop growth. The European 
Space Agency MELiSSA program has an interest in the development of models describing nutrient uptake dynamics 
in higher plants in relation to their photosynthetic capacity. These models are also useful in relating crop yield to 
environment variables such as light and CO2 concentration so as to establish cultural recommendations (Lasseur et 
al., 2000). As such, models which describe canopy level photosynthesis may also be used to describe nutrient 
dynamics when the higher plant chamber is integrated with the microbiological components of the MELiSSA loop. 
The work in this paper summarizes an initiative to evaluate techniques in modeling plant photosynthetic capacity for 
the purpose of developing cultural recommendations and developing the framework for dynamic systems models in 
MELiSSA-HPC integration.  

Traditional plant canopy growth analysis involves the destructive harvest of samples of individual plants taken from a 
full canopy at successive intervals and a determination of the sample dry weights. Biomass accumulation profiles 
derived from dry weight data are then fitted with models having a defined functional form (Hunt, 1979; Hunt, 1982). 
Generally, these models have a sole predictor, which is some estimate of plant age (days after planting) or have a 
number of predictors associated with integrated environment variables (integrated photon flux, degree-days, 
integrated CO2 exposures etc.). Destructive measures are useful when static estimates of yield are correlated with 
environment variables spanning a range of treatment levels (i.e. CO2 or light intensity). However, in cases where a 
large range of treatment levels must be spanned it is often impractical to rely on static yield estimates alone since a 
large number of closed chambers and plants must be used. 

While these models are predictive in nature the analyst is forced to choose among particular parametric forms which 
may result in over or under-fitting.  This can result in a high degree of collinearity among predictors, especially if a 
high order polynomial of a single predictor variable is used to model a complex growth profile. Further, sampling from 
a full canopy induces thinning responses in remaining plants that can obscure growth profiles. Non-destructive 
techniques have been developed which allow for growth estimation from measures of whole plant or full canopy 
photosynthetic activity (Dutton et al., 1988). Because these methods are non-intrusive and avoid the need for 
replicate pairings among successive harvests, they are believed to give better results especially in cases where 
treatment ranges are limited (Causton, 1991). A problem of such techniques is that resultant measures of 
photosynthetic activity are highly variable and display more complex profiles over the course of crop development. 
This is a result of the fact that photosynthetic measures are first derivative estimates of destructive-biomass 
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accumulation profiles. As such these profiles can exhibit instantaneous fluctuations in growth rate not evident in 
traditional profiles. The fitting of parametric models to photosynthetic profiles is expected to demand high-order 
polynomials (or a rigid non-linear form) which can result in model instability (Draper and Smith, 1998).  Further, it is 
difficult to find true estimates of canopy photosynthetic variability in the absence of these models. This is a result of 
the fact that canopy level photosynthetic studies require considerable infrastructure (i.e. full canopy chambers) or 
demand experiment replication through time. This means that estimates of variability in the air revitalization capacity 
of bioregenerative systems (which is coupled to photosynthetic activity) is difficult to assess. However, statistical 
techniques of curve fitting may be harnessed to estimate photosynthetic variability from the error structure of models 
fitted to data collected over the period of crop growth.  

At least two solutions to the problems with non-destructive plant growth analysis exist. First photosynthetic profiles 
(or more formally Net Carbon Exchange Rates; Dutton et al ., 1988) may be integrated to yield non-destructive 
biomass accumulation profiles. This is disadvantageous because the variability masked by such a procedure has 
importance from a physiological perspective. Secondly, methods of non-parametric (form-free or smoother) 
regression may be used. These methods generate predicted values of a dependent variable from empirical data 
without having to assume any particular functional relationship with the independent variable. Such techniques are 
believed to be able to generate predicted values (and their variability) in complex profiles with greater stability than 
their parametric counterparts (due to collinearity problems in high order polynomials; Draper and Smith, 1998). The 
purpose of this paper is two fold. First, the underlying concepts of form-free regression are reviewed as well as their 
application in photosynthetic and traditional growth analysis and environment variable correlation analysis. Secondly, 
a variety of parametric and non-parametric models are applied to photosynthetic data derived from leafy vegetable 
production trials in closed environments. The application of non-parametric models to the description of canopy gas 
exchange dynamics is assessed and compared to more-complicated non-linear models. This is done with the intent 
of illustrating these approaches’ utility in BLS biomass production studies aimed at assessing crop growth and air 
re-vitalization capacity under varying CO2 and light levels. 

 
THEORETICAL CONSIDERATIONS FOR MODEL DEVELOPMENT 

GENERAL REGRESSION SMOOTHERS - Hastie and Tibishirani (1990) provide an excellent and comprehensive 
review of regression smoothers in the context of Generalized Additive Models. While their work provides many of the 
theoretical details used in this paper other sources of information include Cleveland and Devlin (1988) and Cleveland 
(1979). These works deal with locally weighted regression type smoothers. 

In the Generalized Additive Model framework it is assumed that for response variable Y and predictor X,  

 

Y f X= +( ) ε     [1] 

 

where 
E( )

var( )

ε

ε σ

=

=

0
2    [2] 

where ε is the error and E is the expected value. In the case of a smoother, the estimate of function f is given by s, 
where s(xo) is the fitted function value at xo. There are many types of smoother functions, S, which can be used to 
generate fitted values. In general, the function s utilizes neighbourhoods around the value xo for which a fit is 
obtained. For example, a running mean smoother might define a neighbourhood around xo as xo " k. This is to say 
that k points to the left and right of xo define the neighbourhood for xo. The fitted value s(xo) for a running mean 
smoother is obtained by averaging the yi values for each of the xi points in the neighbourhood of xo " k. In general 
there are a number of ways in which s(xo) can be computed and each type of smoother differs in: 

1) how the response values in each of neighbourhoods of the target value xo  are averaged and, 
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2) how large the neighbourhoods are defined. 

Another type of smoother is the Kernel smoother. In such a smoother an explicitly defined set of weights to be 
applied to members of the target neighbourhood are used to define an estimate (in this case a weighted average of 
response variables in the neighbourhood) at each target value. The weights generally decrease in a smooth fashion 
(say as that defined by a normal density curve) away from the target value xo. The reader with an interest in these 
and other types of smoothers are referred to Hastie and Tibishirani (1990). Particular interests in this paper are the 
cubic-spline and locally weighted regression type smoothers. These are the smoother types that have been used in 
traditional plant growth analysis (Shipley and Hunt, 1996).  

CUBIC SPLINE SMOOTHERS - The cubic spline algorithm operates by placing knots or breakpoints at each xi. A 
cubic polynomial is fit in each of the regions marked by the knots such that, at each observation (knot), the 
polynomials have two continuous derivatives. The cubic spline-smoothing algorithm selects a fitted function s(x) from 
the family of functions S(x) such that the Penalized Residual Sum of Squares (PRSS) is minimized. The PRSS is 
given by: 

[ ( ( )) ( ( )) ]y s x s t dti i
i

n
− +∑ ′′∫

=

2

1

2λ   [3] 

where s(x) is the cubic spline function. The first term of PRSS is the traditional residual sums of squares estimate. If 
a function was defined by minimizing this term alone, the result would be an interpolator of the mean values of y. The 
second term is present to penalize curvature in the model (represented by the second derivative of the spline 
function).  The co-efficient 8 of this term represents span, and can be thought of as the distance between knots 
(expressed either as a percentage of, or the absolute number of points in the neighbourhood of the target xo. The 
smaller the 8, the less dominant the penalty term plays and the greater the curvature to the fitted function. As 8 
approaches infinity, the larger the penalty term, and the second derivatives are forced to zero. This means that the 
fitted line is equivalent to the least squares linear regression line. The best model, then, is one which shows the 
general trend in the data but which ignores random fluctuations around this trend (Shipley and Hunt, 1996). The 
choice of 8 is also significant since it defines equivalent degrees of freedom measures used to compare different 
smoothers.  

  
LOCAL WEIGHTED REGRESSION (LOESS) SMOOTHERS - For a given ordered set of xo (usually harvest dates in 
traditional growth analysis or Pn measurement dates in non-destructive analysis) an estimate of yo is determined 
using weighted linear or quadratic regression. In this case the regression is local because the fitted  yo is determined  
after assigning weights based on the tri-cube weight function. If k nearest neighbours are used, then the k nearest 
neighbours to xo can be denoted as N(xo). The value of )(xo) is first determined: 

∆x o x xo N x o i= −max ( )    [4] 

This is the distance of the furthest near neighbour from xo. Weights, wi are assigned to each near-neighbour in N(xo) 
according to the tri-cube weighted function: 

W
x x

x
o i

o
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    [5] 

where  { }W g g( ) ( )= −1 3 3  if 0#g<1  

or        W g( ) = 0 , otherwise  [6] 

 



 

Guelph ESA-MELiSSA TN 50.1     
 

4 

 

s(xo) is computed from the weighted least squares fit of y on x in N(x o) using the weights computed in Eqn. [6]. This 
means that the furthest neighbour is assigned a weight of 0. It is easy to see that the local weighted regression 
smoother is a special type of Kernel smoother with weights determined by the tri-cube function instead of those 
defined by a normal density curve. In the local weighted regression procedure of S-Plus (loess.smooth), 8 is defined 
as the percent of nearest neighbours and is used to determine k for neighbourhood definition (Data Analysis 
Products, 1999). 

APPLICATION OF NON-PARAMETRIC MODELS TO PHOTOSYNTHESIS RESPONSE AND 
RESPONSE SURFACES 

An application of non-parametric regression is in the fitting of surfaces describing canopy photosynthetic responses 
to light intensity, crop age and CO2 concentration. Data were collected in eight sealed environment chambers 
located in research greenhouses and laboratories at the University of Guelph using Lettuce (Lactuca sativa cv. Bella-
green) and Beet (Beta vulgaris cv. Detroit Medium Red) to determine their responses to environment variables. These 
experiments were conducted over a period from June 1998 to August 2001. Greenhouse chambers were lit with 
natural sunlight and photoperiod and employed a flow through gas analysis system that allowed for CO2 enrichment 
and exposure of study plants to concentrations ranging from ambient (350 µL L) to 1300 µL L. Chamber design and 
operational specifications are the subject of another technical note and are therefore not presented here. Each of the 
eight greenhouse chambers were stocked with four plants of either lettuce, or beet plants that were left in the 
chambers from the seedling stage (approximately 21 DAP) to harvestable stage (65 DAP for lettuce, 56 DAP for 
beet). Net Carbon Exchange data were recorded in each of the eight chambers at 15-minute intervals over the course 
of crop development. This allowed for the generation of a response profile relating net-photosynthesis during day-light 
hours (Pn) to ambient light intensity (short term fluctuations) at each observation and crop age (DAP 40 to 65 only) 
in a single chamber. Yield responses to four CO2 concentrations (with the exception of lettuce) of 350 ppm, 700 
ppm, 1000 ppm or 1300 ppm were developed using two replicates (two chambers) per CO2 treatment for Beet.  

A rectangular parabola (non-linear, parametric) model was applied to the photosynthesis data collected for lettuce 
and Beet in the greenhouse chambers over the range of crop development and under a range of ambient light 
intensities. This was done using the nls function of S-Plus (Data Analysis Products, 2000). This model is similar to 
the model presented by Iqbal et al, (1996) but allows for dynamic maximum gross photosynthesis and dark 
respiration rates in relation to crop age. This new model has the form;  

 

Pn
DAP
DAP

DAP=
+

+ +
+ +

α β β
α β β

β βο

ο

Ι
Ι

( )
( )

( )1

1
2 3  [6] 

where α is a non-linear least squares estimate of photosynthetic efficiency, β0 β1 β2 and β3 are parameter estimates, I 
is the incident photosynthetic photon flux at canopy height, and DAP is days after planting. The surface response 
resulting from the non-linear least  

 
 

Light (PPF) DAP 
 

Loess Regression 95% CI for 
Predicted Pn 

Modified Rectangular Hyperbola 
95% CI for Predicted Pn 

 
  Fit upper lower fit upper lower 

215 40 0.323 0.438 0.206 0.284 0.355 0.212 
146 46 0.751 0.808 0.693 1.21 1.24 1.17 
101 54 1.07 1.12 1.01 1.59 1.62 1.55 
394 57 3.63 3.72 3.54 3.59 3.67 3.50 
494 61 4.71 4.87 4.55 4.47 4.58 4.36 
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Table 1. Comparison of variability measures derived from non-linear parametric (modified rectangular hyperbola) and 
locally weighted (loess) regression at five selected points. Presented are the 95% confidence intervals for the 
predicted Pn response for both models. 

squares fit for lettuce data is presented in Figure 2. The model fit the data well with a residual-sum of mean-squared 
error of 0.460 with df=2597 and model df=4. All parameters were significant at the p=0.05 with the exception of  β2. 
Parameter estimates were α=0.057, β0 =-10.28, β1 = 0.289, β2 = 0.064 and β3 = -0.226.  

A loess model was fit to the same set of lettuce, single chamber data. The resulting model had equivalent degrees of 
freedom of 7.1, a residual standard error of 0.3812 and a multiple r2 value of 0.89. A plot of the fitted response surface 
is presented in Figure 3. 

A comparison of fitted values and 95% confidence intervals (using traditional inferential techniques in both cases) for 
prediction are presented in Table 1 for five selected points on the surface. Both the non-linear parametric model and 
the loess model performed well. A comparison between fitted values across the DAP and Light domains using the 
Modified Welch two sample t-test (for unequal variances) indicated no significant difference at p=0.05. However, the 
prediction variability estimates presented in Table 3 indicate that the non-linear model gave tighter estimates of 
canopy photosynthetic response owing to its lower model degrees of freedom. It is important to note that use of the 
non-parametric model avoided difficulties of having to obtain initial parameter estimates and the computational 
challenges associated with non-convergence in the nls algorithm. These results indicate that the loess model could 
perform as well as, if not better than the non-linear parametric model(s) used to describe light/crop age influences on 
photosynthesis.  

A comparison of prediction intervals at four common surface points was made with the 95% confidence intervals for 
the mean of photosynthesis measures derived from the five other chambers (not used in model development). Only 
50% of the predicted model responses (both the non-linear and loess) were marginally significantly different (p=0.05) 
from the mean responses in the other five chambers.  This is a result of error, which may have been accounted for by 
incorporating a chamber effect. Despite these effects, the non-parametric and parametric models estimated Pn 
variability quite well in data extraneous to those used in their development.  

 

The performance of the non-parametric and non-linear models indicates that such models can be applied to data 
collected using Beet. The parametric model presented in equation  [6] was fit to Beet data collected as described 
above. In the initial mode formulation, however, terms for CO2 concentration were included in the rectangular 
hyperbola form. The results of ANOVA indicated that CO2 was not a significant predictor of NCER and these terms 
were therefore dropped from the model. This result seems a bit curious but is likely a result of two factors. First, 
NCER data, as described earlier, is highly variable. The limited range (as a result of control) in CO2 concentrations to 
which the plants were exposed meant that the CO2 term in the model did not account for a significant portion of 
variability in NCER. Secondly, the crop was grown for the majority of its life cycle in non-saturating lighting 
conditions. This means that the effect of CO2 concentrations on NCER were diminished. However, an analysis of 
post harvest data indicated that CO2 had a significant effect on edible and total plant biomass. The reader is 
reminded that small, and statistically insignificant differences in NCER owing to CO2 treatment effects may be 
manifested as significant differences in yield since biomass is a result of integrated NCER over the period of crop 
development.  

The results of the parametric and non-parametric fits are presented in Figures 4 and 5, respectively. The results of 
comparisons made between the LOESS and the rectangular hyperbola model were similar to those described above 
for lettuce, with the exception of a small valley at mid-to high light ranges at crop maturity. This prediction of the 
LOESS model can not be explained. The modified rectangular hyperbola model performed very well with regards to 
allowing for variable light compensation points and shifting points of light saturation. The parametric model shows 
very early saturation of the crop to light at young ages followed by an increase in photosynthetic efficiency (greater 
slope) as the crop matures.  
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The relationship between crop edible, total biomass and CO2 concentration are presented in Figures 6 and 7. A 
significant relationship between these harvest indices and CO2 concentration was found (p=0.01). 

 
GENERAL CONCLUSIONS 

A comparison between parametric non-linear and non-parametric models used to describe the photosynthesis 
response surfaces indicated that either would suffice in terms of their ability to capture the main trends in a 
complicated NCER trajectory.  

The effects of CO2 concentration of Beet NCER were not significant but CO2 had a significant effect on total plant and 
edible biomass. The non-parametric model performed well and indicated strong crop developmental stage effects on 
light response.  
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Figure 1.  Photosynthesis response data derived from a closed chamber trial using lettuce under ambient photoperiod and light intensity. Pn 
is expressed in ppm CO2  s

-1(:L CO2 L
-1 s-1). Light Intensity (PPF) is expressed in µmol m-2 s-1 PAR.  
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Figure 2. Non-linear response surface fit to the lettuce photosynthesis data presented in Figure 1. Fit is a result of a modified rectangular 
hyperbola. Pn is expressed in ppm CO2  s

-1(:L CO2 L
-1 s-1). Light Intensity (PPF) is expressed in µmol m-2 s-1 PAR. 

 
 

Non-Linear Least Squares Model
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Figure 3.  Loess model fit the photosynthesis the lettuce photosynthesis response data presented in Figure 1. Pn is expressed in ppm CO2  
s-1(:L CO2 L

-1 s-1). Light Intensity (PPF) is expressed in µmol m-2 s-1 PAR. 

 

 

 
 

Loess Model
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Figure 4. Non-linear response surface fit to the Beet NCER data. Fit is a result of a modified rectangular hyperbola. NCER is expressed in 
µmol CO2 s

-1 Light Intensity (PAR) is expressed in µmol m-2 s-1 PAR and DAP is Days After Planting. 
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Figure 5. LOESS response surface fit to the Beet NCER data. Fit is a result of a modified rectangular hyperbola. NCER is expressed in µmol 
CO2 s

-1 Light Intensity (PAR) is expressed in µmol m-2 s-1 PAR and DAP is Days After Planting. 
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Figure 6. Beet Edible Biomass  (g Dry Weight (DW)) relationship with CO2 concentration in the chambers. The fitted line is a result of a 
LOESS regression with df=2.  
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Figure 7. Total Beet Biomass  (g Dry Weight (DW)) relationship with CO2 concentration in the chambers. The fitted line is a result of a 
LOESS regression with df=2.  

 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 


