

TECHNICAL NOTE

Memorandum of Understanding TOS-MCT/2002/3161/In/CL

TECHNISCHE UNIVERSITÄT HAMBURG-HARBURG

Bioprozess- und Bioverfahrenstechnik

TECHNICAL NOTE: 86.3.8

HACCP STUDY FOR THE HYPERTHERMOPHILIC LIQUEFACTION UNIT

prepared by/ <i>préparé par</i>	Juergen Kube		
reference/réference	14719/00/NL/SH		
issue/édition	1		
revision/révision	0		
date of issue/date d'édition			
status/état	Draft		
Document type/type dedocument	Technical Note		
Distribution/distribution			

CONFIDENTIAL DOCUMENT

issue 1 revision

page ii of ii

APPROVAL

Title titre	issue 1 issue	revision O revision
author auteur	date date	
approved by approuvé by	date date	

CHANGE LOG

reason for change /raison du changement	issue/issue	revision/revision	date/ <i>date</i>

CHANGE RECORD

Issue: 1 Revision: 0

reason for change/raison du changement	page(s)/page(s)	paragraph(s)/paragraph(s)

issue 1 revision

page iii of iii

TABLE OF CONTENTS

- 1. HACCP study for the hyperthermophilic dialysis unit
- 2. Balance data for the hyperthermophilic liquefaction unit

MELiSSA

1 HACCP STUDY FOR THE HYPERTHERMOPHILIC LIQUEFACTION UNIT

The HACCP study in this TN was prepared according to the protocol submitted by the ESA. The protocol is divided in 4 steps and 9 tasks.

Task 1: Definition of the scope, the objectives of hazard analysis and the hazard analysis planning

The HACCP study is done for the hyperthermophilic liquefaction unit, as depicted in figure 1. It is an open system. Feed containing solid particles enters the fermentor; an effluent stream leaves the fermentor. A fresh dialysate stream enters the system and leaves the system loaded with dissolved organic carbon. Steam or electricity is used to heat the system. A cooling fluid might become necessary as well. A stirrer and a pump have to be driven by electric or mechanic power supply.

The general working principle is a microbial degradation of fibrous matter at high temperatures (90 °C - 100 °C), which ensures the integrity of the degrading consortium and a fast solubilization of solid matter in a equilibrium controlled liquefaction step. The liquefied solids are withdrawn over the dialysis membrane; thus shifting the equilibrium towards the liquefied products.

Table 1 shows the classification of the hazard. The classification given by the ESA was used in this protocol.

Category	Severity	Severity of safety consequence
I	Catastrophic	Loss of life, life-threatening or permanently disabling injury or occupational illness; Loss of an element of an interfacing manned flight system; Loss of launch site facilities or loss of system; Severe detrimental environmental effects.
II	Critical	Temporarily disabling, but not life-threatening injury or illness; Major damage to flight systems or loss of or major damage to ground facilities; Major damage to public or private property; Major detrimental environmental effects.
III	Marginal	Minor injury, minor disability, minor occupational illness; Minor system or environmental damage.
IV	Negligible	Less than minor injury, disability, occupational illness; Less than minor system or environmental damage.

Table 1: classification of the hazards

TN 3.8 TUHH Biotech HACCP Study for the hyperthermophilic liquefaction unit

Figure 1: scheme of the hyperthermophilic liquefaction unit. The fermentor is colored blue, the filtration circuit red, the dialysis unit green.

Task 2 Definition of system baseline

MELiSSA

The hyperthermophilc dialysis unit is designed to degrade fibrous organic matter. The degradation is done with anaerobic hyperthermophilic microorganisms at 90 °C – 100 °C. The culture medium is a mixture of organic fibrous matter, feces and water. No other ingredients such as yeast extract, organic acids or trace minerals have to be added. The medium does not need to be sterilized before entering the reactor. The solid matter concentration in the influent is approximately 2%.

The standard operation conditions are 90-100°C, pH6-7. The feed pump is set to maintain a hydraulic retention time of 4 d. The level of dissolved organic carbon in the fermentor is 500-1000 mg/L, the concentration of VFA is 50-200 mg/L, and the amount of total solids is 20-30 g/L. The loaded dialysate contains 300-800 mg/L DOC. The agitation of the stirrer is set to a slow mixing.

TN 3.8	HACCP Study for the hyperthermophilic liquefaction unit	
TUHH Biotech		
This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization		
Memorandum of Understanding TOS-MCT/2002/3161/In/CL		

MELiSSA

Task 3 Identification of hazard manifestations

Hazards are classified in physical, chemical, and biological hazards.

Table 2 shows the hazard matrix for the three sub systems. From this hazard matrix the hazard manifestation list, shown in table 3 is derived.

	Table 2: Ha	zard matrix		
Conoria hozorda				
Generic nazarus	Reactor	MF/UF	Dialysis	
Physical hazards			-	
-Power supply failure	Х	Х	-	
-Steam supply failure	Х	-	-	
-High Temperature	Х	Х	Х	
-High Pressure	Х	Х	Х	
-Freezing	-	Х	Х	
-Integrity problems	Х	Х	Х	
Biological hazards				
-Fouling	-	Х	Х	
Chemical hazards				
-Toxicity	Х	-	-	

The hazards in table 2 are most important and most likely hazards that will endanger the hyperthermophilic liquefaction plant. Most of the hazards are of physical nature. Just one chemical hazard is listed here: the introduction or production of toxic compounds into / in the reactor. And even the production of toxic compounds will occur due to a physical hazard (increase of temperature). The only biological hazard is the formation of biofilms on different surfaces in the hyperthermophilic liquefaction unit. A biological hazard, that can occour at lower temperatures, such as the contamination with other bacteria is non-existant for the hyperthermophilc culture. At first the hyperthermophilc culture was enriched on a medium containing fecal matter. Mesophilc microorganisms are not able to endanger the hyperthermophilic consortium, if the temperature of the reactor is kept at hyperthermophilic conditions. Secondly, the introduction of new microorganisms able to grow at hyperthermophilic anaerobic conditions will not endanger the liquefaction. Unlike the mesophilic culture, where a contamination of the culture with methanogenic microorganisms will be disastrous because it will shift the product spectrum from VFA to methane, such contamination cannot occur at 90 °C. Literature knows no microorganisms producing methane from acetic acid at hyperthermophilc conditions. Only two microorganisms are currently known, which are able to degrade acetic acid anaerobically at hyperthermophilic conditions. These organisms are Ferroglobus placidus, isolated by Hafenbrandl et al. of the group of Huber and Stetter at the university of Regensburg (Germany) and Geoglobus ahangari, isolated by Kashefi and Lovley of the university of Massachusetts (MA, USA). However both microorganisms need stoiciometrical amounts of Fe³⁺ as electron acceptor and grow to negligible cell densities (10^5 cells / mL) in suspension cultures. A contamination with other hyperthermophilc microorganisms able to grow on the substrate will not endanger the plant but increase its efficiency instead. In waste water plants this is a common phenomenon. For example the UASB reactor, which needs a granular biomass, will develop this biomass after a

TN 3.8	3.8 HACCP Study for the hyperthermophilic liquefaction unit		
TUHH Biotech			
This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization			
Memorandum of Understanding TOS-MCT/2002/3161/In/CL			

certain time by accumulating the granular-forming microorganisms from the feed. An accumulation of a biomass, which is not able to degrade the substrate will not happen, neither in a UASB-reactor nor in a hyperthermophilic dialysis-reactor. These microorganisms will simply pass the reactor, but will not accumulate.

As a consequence of this, the physical hazards are of predominant nature here, whereas the chemical and biological hazards are less important. The TN therefore focuses on the physical hazards.

Table 3: Hazard manifestation list				
Mission	Subsystem	Hazard	manifestation	
phase				
Normal		HM1.1	Power supply failure – stirrer will not work	
operation		HM1.2	Steam supply failure – temperature will	
			decrease	
		HM1.3	Toxic substances enter the fermentor / are	
			produced in the fermentor	
		HM1.4	Temperature control failure – temperature will	
	D (increase or decrease	
	Reactor	HM1.5	Reactor outlet plugs – increase of reactor	
			pressure	
		HM1.6	After temperature control failure – reactor	
			freezes	
		HM1.7	Fatigue fracture of vessel or stirrer; seal breaks	
			- reactor liquid and/or gas escapes into the	
			environment	
		HM2.1	Power supply failure – Filtration circuit will not	
		run		
		HM2.2	Fouling will plug the MF/UF Membrane	
		HM2.3	High temperature – Membrane material can be	
			damaged – pump seal will be damaged –	
	MF/UF-System		Biomass can suffer	
		HM2.4	High pressure – Membrane can break, pump	
			seal can break	
		HM2.5	Freezing – piping can freeze in cold	
			environment	
		HM2.6	Membrane breakage – fatigue fracture of	
			membrane material; leaking of pipes	
		HM3.1	Biofilm growth on both sides of hollow fibers –	
	Dialysis system		reduction of membrane performance	
		HM3.2	High temperature – membrane material will be	
			damaged	
		HM3.3	High pressure – moderate pressure gradients	
			over the membrane will destroy the membrane	
	MF/UF-System Dialysis system	HM1.7 HM2.1 HM2.2 HM2.3 HM2.4 HM2.4 HM2.5 HM2.6 HM3.1 HM3.2 HM3.3	Fatigue fracture of vessel or stirrer; seal breaks– reactor liquid and/or gas escapes into the environmentPower supply failure – Filtration circuit will not runFouling will plug the MF/UF MembraneHigh temperature – Membrane material can be damaged – pump seal will be damaged – Biomass can sufferHigh pressure – Membrane can break, pump seal can breakFreezing – piping can freeze in cold environmentMembrane breakage – fatigue fracture of membrane material; leaking of pipesBiofilm growth on both sides of hollow fibers – reduction of membrane performanceHigh pressure – membrane material will be damagedHigh pressure – membrane material will be damaged	

TN 3.8	HACCP Study for the hyperthermophilic liquefaction unit		
TUHH Biotech			
This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization			
Memorandum of Understanding TOS-MCT/2002/3161/In/CL			

page 5 of 5

Γ	HM3.4	Freezing – piping can freeze in cold
		environment
	HM3.5	Membrane breakage – fatigue fracture of
		membrane material; leaking of pipes

Task 4 Identification and classification of the hazard scenarios

Hazard manifestations comprise of causes effects and consequences. Causes, effects, and consequences are listed separately in tables 4, 5, and 6. Table 7 lists all hazard manifestations; the causes, effects and consequences of a hazard, the symptoms and propagation and reaction times. The likelihood of the scenarios is not given here. It depends on design criteria, which will be set during detail engineering.

TN 3.8 TUHH Biotech HACCP Study for the hyperthermophilic liquefaction unit

MELissa

issue 1 revision 0 -

Table 4: List of causes				
Hazard manifestation	Cause			
HM1.1	CA1.1	Power supply failure		
	CA1.2	Maintenance works		
	CA1.3	Breaking of stirrer seal		
	CA1.4	Breaking of stirrer bearings		
HM1.2	CA1.5	Steam supply failure		
	CA1.6	Cooling fluid supply failure		
HM1.3	CA1.7	Detergents/Disinfectants enter the fermentor		
	CA1.8	High loads of easy degradable substrate enter the		
		fermentor		
	CA1.9	Toxic substances are formed at high temperature		
		surfaces		
HM1.4	CA1.10	Temperature control failure		
HM1.5	CA1.11	Sedimentation of substrate and biomass		
	CA1.12	Fouling closes the outlet lines		
HM1.6	CA1.10	Temperature control failure		
HM1.7	CA1.13	Fatigue fracture of stirrer / stirrer shaft		
	CA1.14	Fatigue fracture of vessel		
	CA1.15	Leaking of vessel seals		
HM2.1	CA2.1	Power supply failure		
	CA2.2	Pump failure		
	CA2.3	Pump maintenance works		
HM2.2	CA2.4	Fouling reduces permeate stream		
HM2.3	CA2.5	Hot circuit stream melts membrane material		
HM2.4	CA2.6	High trans-membrane pressure destroys the membrane		
	CA2.7	Valve or piping in retentate stream downstream of the		
		Filtration unit is closed		
HM2.5	CA2.8	Changes in temperature of environment		
HM2.6	CA2.9	Leaking of pipe seals		
	CA2.10	Fatigue fracture of membrane material		
	CA2.11	Leaking of membrane seals		
	CA2.12	Microorganisms grow through membrane		
HM3.1	CA3.1	Biofilm formation in the dialysate circuit		
HM3.2	CA3.2	Hot circuit stream melts membrane material		
HM3.3	CA3.3	Pressure gradient over the membrane destroys		
		membrane		
	CA3.4	Valve downstream of dialysis unit is closed		
HM3.4	CA3.5	Changes in temperature of environment		
HM3.5 CA3.6 Leaking of pipe seals		Leaking of pipe seals		
	CA3.7	Fatigue fracture of membrane material		
	CA3.8	Leaking of membrane seals		

 TN 3.8
 HACCP Study for the hyperthermophilic liquefaction unit

 TUHH Biotech
 This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization

Memorandum of Understanding TOS-MCT/2002/3161/In/CL

	Ta	ble 5: Lists of effects
Causes		effect
CA1.1	EF1.1	Stirrer stops, Biomass and solid particles settle down
CA1.2		in the fermentor
CA1.3		
CA1.4		
CA1.5	EF1.2	Fermentor cools down and reaches environmental
		temperature after a long time
CA1.6	EF1.3	Fermentor has to be cooled against environment
	EF1.4	Temperature in the fermentor increases, Biomass
		becomes reversibly inactive
	EF1.5	Fermentor liquid boils, Biomass becomes irreversibly
		inactive
CA1.7	EF1.6	Biomass becomes reversibly intoxicated
	EF1.7	Biomass becomes irreversibly intoxicated
CA1.8	EF1.8	pH in the fermentor drops due to rapid substrate
<u>CA10</u>		degradation to VFAs, Biomass performance decreases
CA1.9	EFI.9	Toxic tumes leave the fermentor with the off-gas
CA1 10	EFI./	Biomass becomes irreversibly inactive
CA1.10	EF1.2	Fermentor cools down and reaches environmental
	EE1 2	Example a formation of the social against environment
	EF1.3	Temperature in the formenter increases
CA1 11	EF1.4 EE1.1	Stirrer stops Biomass and solid particles settle down
CALLI	L1 1.1	in the fermentor, pressure increase in the fermentor
CA1 12	EF1 10	Pressure increase in the fermentor
CA1 13	EF1 1	Stirrer stops Biomass and solid particles settle down
		in the fermentor
CA1.14	EF1.11	Loss of fermentation liquid/gas to environment
CA1.15	EF1.11	Loss of fermentation liquid/gas to environment
CA2.1	EF2.1	Breakdown of filtration circuit
CA2.2]	
CA2.3		
CA2.4	EF2.2	Volume flow to dialysis unit decreases
	EF2.3	Biofilm particles can detach form piping / membrane
		and plug the dialysis module
CA2.5	EF2.4	MF/UF-membrane is destroyed, loss of filtration
	EF2.5	Membrane seals are destroyed, leakage of sludge to
		the environment
CA2.6	EF2.4	MF/UF-membrane is destroyed, loss of filtration
	EF2.5	Membrane seals are destroyed, leakage of sludge to
		the environment
	EF2.6	Burst disk opens and relieves filtration circuit to
TN 3.8	HACCP	Study for the hyperthermophilic liquefaction unit
TUHH Biotech	6 1 1 1 1 1 1 1	
This document is confidential property	ot the MELiSSA par	tners and shall not be used, duplicated, modified or transmitted without their authorization
	Memorandum	ot Understanding TOS-MCT/2002/3161/In/CL

page 8 of 7

	reactor			
EF2.4	MF/UF-membrane is destroyed, loss of filtration			
EF2.5	Membrane seals are destroyed, leakage of sludge to			
	the environment			
EF2.6	Burst disk opens and relieves filtration circuit to			
	reactor			
EF2.7	Filtration circuit freezes, pipes burst			
EF2.8	Loss of retentate to environment			
EF2.4	MF/UF-membrane is destroyed, loss of filtration			
EF2.8	Loss of retentate to environment			
EF2.9	Hyperthermophilic MO enter the dialysate stream			
EF2.10	Hyperthermophilic biofilm formation in dialysis unit			
EF3.1	Plugging of dialysis unit in housing stream			
EF3.2	Lowering of dialysis performance			
EF3.3	Dialysis membrane is destroyed, loss of dialysis			
EF3.4	Dialysis seals are destroyed, leakage of			
	filtrate/dialysate to the environment			
EF3.5	Convective flow from/to fermentor			
EF3.3	Dialysis membrane is destroyed, loss of dialysis			
EF3.3	Dialysis membrane is destroyed, loss of dialysis			
EF3.6	Convective flow from fermentor to dialysate			
EF3.7	Freezing of dialysate circuit / pipes burst			
EF3.8	Loss of dialysate to environment			
EF3.3	Dialysis membrane is destroyed, loss of dialysis			
EF3.8	Loss of dialysate to environment			
	EF2.4 EF2.5 EF2.6 EF2.7 EF2.8 EF2.4 EF2.8 EF2.9 EF2.10 EF3.1 EF3.2 EF3.3 EF3.3 EF3.4 EF3.3 EF3.3 EF3.3 EF3.3 EF3.3 EF3.3 EF3.8 EF3.3 EF3.8			

Table 6: List of consequences						
effect		Consequence				
EF1.1	CO1.1	Plugging of fermentor outlet				
	CO1.2	Boiling of fermentor liquid due to temperature				
		gradients				
	CO1.3	Formation of toxic reaction products in the fermentor				
	CO1.4	Hyperthermophilic biomass dies				
	CO1.5	Temporary shutdown of hyperthermophilic				
		liquefaction unit				
EF1.2	CO1.6	Liquefaction performance decreases				
	CO1.7	Fermentation broth freezes				
	CO1.4	Hyperthermophilic biomass dies				
EF1.3	CO1.8	Heat intake from the environment				
EF1.4	CO1.9	Biomass becomes reversibly inactive				
EF1.5	CO1.10	Biomass becomes irreversibly inactive				
	CO1.5	Temporary shutdown of hyperthermophilic				
		liquefaction unit				

TN 3.8	HACCP Study for the hyperthermophilic liquefaction unit					
TUHH Biotech						
This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization						
	Memorandum of Understanding TOS-MCT/2002/3161/In/CL					

page 9 of 9

EF1.6	CO1.9	Biomass becomes reversibly inactive					
EF1.7	CO1.10	Biomass becomes irreversibly inactive					
	CO1.5	Temporary shutdown of hyperthermophilic					
	00110	liquefaction unit					
EF1.8	CO1.11	pH of hyperthermophilic fermentor drops					
21 110	C01.9	Biomass becomes reversibly inactive					
EF1.9	C01.12	Intoxication of phototrophic compartment					
	CO1 13	Accumulation of non-degradable compounds in the					
	001112	loop					
EF1.10	CO1.14	Opening of safety valve / burst disc. loss of					
		fermentation liquid/gas to the environment					
EF1.11	CO1.15	Contamination of environment with hyperthermophilic					
		MO					
	CO1.16	Loss of carbon/nitrogen/sulfur/phosphor/oxygen/water					
		to the environment					
	CO1.17	Loss of hyperthermophilic liquefaction unit					
EF2.1	CO2.1	Accumulation of VFA in the fermentor					
	CO2.2	Drop of pH in the fermentor, biomass becomes					
		reversibly inactive					
	CO2.3	nutrient flow to phototrophic compartment stops					
	CO2.4	Temporary shutdown of hyperthermophilic					
		liquefaction unit					
EF2.2	CO2.1	Accumulation of VFA in the fermentor					
	CO2.2	Drop of pH in the fermentor, biomass becomes					
		reversibly inactive					
CO2.5		nutrient flow to phototrophic compartment decreases					
	CO2.4 Temporary shutdown of hypertherm						
		liquefaction unit					
EF2.3	CO2.6	Increase of dialysis unit inlet pressure					
	CO2.7	Breakage of dialysis membrane					
	CO2.8	Plugging of dialysis membrane					
	CO2.9	Replacement of dialysis-membrane					
	CO2.1	Accumulation of VFA in the fermentor					
	CO2.2	Drop of pH in the fermentor, biomass becomes					
		reversibly inactive					
	CO2.3	nutrient flow to phototrophic compartment stops					
	CO2.4	Temporary shutdown of hyperthermophilic					
		liquefaction unit					
EF2.4	CO2.4	Temporary shutdown of hyperthermophilic					
		liquefaction unit					
	CO2.9	Replacement of MF/UF-membrane					
EF2.5 CO2.4 Temporary shutdown of hyperthermo		Temporary shutdown of hyperthermophilic					
		liquefaction unit					
	CO2.10	0 Replacement of MF/UF-membrane seals					
TN 3.8	HACCP	Study for the hyperthermophilic liquefaction unit					
TUHH Biotech							
This document is confidential p	property of the MELiSSA par	tners and shall not be used, duplicated, modified or transmitted without their authorization					
	Memorandum	of Understanding TOS-MCT/2002/3161/In/CL					

	000.11					
EF2.6	CO2.11	Replacement of burst disk				
EF2.7	CO2.12	Replacement of piping				
	CO2.13	Irreversible loss of hyperthermophilic liquefaction unit				
EF2.8	CO2.14	Loss of Water in the system				
	CO2.15	Loss of carbon/nitrogen/sulfur in the system				
	CO2.16	Loss of CO_2 in the system				
	CO2.17	Contamination of environment with hyperthermophilic				
		MO				
EF2.9	CO2.18	Contamination of phototrophic reactor with				
		hyperthermophilic MO				
EF2.10	CO2.9	Replacement of dialysis-membrane				
	CO2.1	Accumulation of VFA in the fermentor				
	CO2.2	Drop of pH in the fermentor, biomass becomes				
		reversibly inactive				
	CO2.3	nutrient flow to phototrophic compartment stops				
	CO2.4	Temporary shutdown of hyperthermophilic				
		liquefaction unit				
EF3.1	CO3.1	Accumulation of VFA in the fermentor				
	CO3.2	Drop of pH in the fermentor				
	CO3.3	nutrient flow to phototrophic compartment stops				
	CO3.4	Temporary shutdown of hyperthermophilic				
		liquefaction unit				
EF3.2	CO3.1	Accumulation of VFA in the fermentor				
	CO3.2	Drop of pH in the fermentor				
	CO3.3	nutrient flow to phototrophic compartment stops				
	CO3.4	Temporary shutdown of hyperthermophilic				
		liquefaction unit				
EF3.3	CO3.4	Temporary shutdown of hyperthermophilic				
		liquefaction unit				
	CO3.5	Replacement of dialysis membrane				
EF3.4	CO3.4	Temporary shutdown of hyperthermophilic				
		liquefaction unit				
	CO3.6	Replacement of dialysis membrane seals				
EF3.5	CO3.7	Liquid level in fermentor drops				
	CO3.8	Liquid level in fermentor rises				
EF3.6	CO3.7	Liquid level in fermentor drops				
EF3.7	CO3.9	Replacement of dialysis pipings				
	CO3 10	Loss of hyperthermonhilic liquefaction unit				
EF3 8	CO3 11	Loss of water to environment				
	CO3 12	Loss of carbon/sulfur/nitrogen/oxygen to environment				
	CO3.12	Contamination of environment with hyperthermorphilic				
	005.15	MO				
1	1	1110				

TN 3.8	HACCP Study for the hyperthermophilic liquefaction unit
TUHH Biotech	
This document is confide	ntial property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization
	Memorandum of Understanding TOS-MCT/2002/3161/In/CL

	Table 7: Hazard	scenario li	ist for normal operation	
Hazard manifestation	Cause - Effects - Consequences	Conseq uence severity	Observable symptoms	Propagatio n and reaction time
HM1.1	CA1.1-EF1.1- CO1.1,	III	Stirrer stops, Blackout, Liquid level in fermentor rises	PT: 1 s RT: 30 min
	CA1.1-EF1.1- CO1.2	III	Stirrer stops, Detection of complex molecules in off- gas, Heat transfer into fermentor decreases, Temperature in reactor changes	PT:1 s RT: 1 d
	CA1.1-EF1.1- CO1.3	III	Detection of complex molecules in off-gas	PT: 30 min RT: 5 min
	CA1.1-EF1.1- CO1.4	II	Decrease in fermentor performance	PT: 1 w RT: 1 d
	CA1.1-EF1.1- CO1.5	II	-	-
	CA1.2-EF1.1- CO1.1	III	-	-
	CA1.2-EF1.1- CO1.2	III	-	-
	CA1.2-EF1.1- CO1.3	III	-	-
	CA1.2-EF1.1- CO1.4	II	-	-
	CA1.2-EF1.1- CO1.5	II	-	-
	CA1.3-EF1.1- CO1.1	III	Stirrer stops, Blackout, Liquid level in fermentor rises, Leaking of fermentor liquid into the environment	PT: 1 s RT: 30 min
	CA1.3-EF1.1- CO1.2	III	Stirrer stops, Detection of complex molecules in off- gas, Heat transfer into fermentor decreases, Temperature in reactor changes Leaking of fermentor liquid into environment	PT:1 s RT: 1 d
	CA1.3-EF1.1-	III	Detection of complex	PT: 30 min

TN 3.8 TUHH Biotech HACCP Study for the hyperthermophilic liquefaction unit

page 12 of 11

	CO1 3		molecules in off-gas	RT· 5 min
	001.5		Leaking of fermentor liquid	KI: 5 mm
			into the environment	
	CA12 EE1 1	TT		DT. 1
	CAI.3-EFI.I-	11	Decrease in lermentor	PI: I W
	CO1.4		performance, Leaking of	RI: I d
			fermentor liquid into the	
			environment	
	CA1.3-EF1.1-	II	-	-
	CO1.5			
	CA1.4-EF1.1-	III	Stirrer stops or slows down,	PT: 1 s
	CO1.1		Blackout, Liquid level in	RT: 30 min
			fermentor rises.	
	CA1.4-EF1.1-	III	Stirrer stops or slows down.	PT:1 s
	CO12		Detection of complex	RT·1 d
	00112		molecules in off-gas Heat	
			transfer into fermentor	
			decreases Temperature in	
			resistor changes	
	CA14 EE1 1	ш	Detector changes	DT: 20 min
	CA1.4- $EF1.1$ -	111	melaculas in off cos	PT. 50 IIIII DT. 5 min
			molecules in oll-gas	RT: 5 min
	CAI.4-EFI.I-	11	Decrease in fermentor	PT: I W
	CO1.4		performance	RT: 1 d
	CA1.4-EF1.1-	II	-	-
	CO1.5			
HM1.2	CA1.5-EF1.2-	III	Decrease in fermentor	PT: 1 h
	CO1.6		temperature, Decrease in	RT: 1 d
			fermentor performance	
	CA1.5-EF1.2-	II	Decrease in fermentor	PT: 1 h
	CO1.7		temperature, Decrease in	RT: 2 w
			fermentor performance	
	CA1.5-EF1.2-	II	Decrease in fermentor	PT: 1 h
	CO1 4		temperature Decrease in	$RT \cdot 2 w$
	00111		fermentor performance	
	CA1 6-FF1 3-	IV	Temperature of fermentor	PT·1 h
	CO1 8	1 V	increases heat balance is not	RT: 12 h
	01.0		alosad	K1 . 12 II
	CA16 EE1 A	Ш	Tomporatura of formanter	DT. 1 h
	CA1.0-EF1.4-	111	in an a second s	
	001.9		increases, iermentor	K1:2 N
		TT	performance decreases	DT 11
	CA1.6-EF1.5-	11	Temperature of fermentor	PT: 1 h
	CO1.10		increases, fermentor	RT: 1 h
			performance decreases	
HM1.3	CA1.7-EF1.6-	III	Fermentor performance	PT: 3d
	CO1.9		decreases	RT: -

TN 3.8 TUHH Biotech HACCP Study for the hyperthermophilic liquefaction unit

page 13 of 13

	CA1.7-EF1.7-	II	Fermentor performance	PT: 3 d
	CO1.10		decreases	RT: -
	CA1.7-EF1.7-	II	-	-
	CO1.5			
	CA1.8-EF1.8-	IV	pH in fermentor drops	PT: 12 h
	CO1.11			RT: 3 d
	CA1.8-EF1.8-	III	pH in fermentor drops,	PT: 12 h
	CO1.9		fermentor performance	RT: 3 d
			decreases	
	CA1.9-EF1.9-	II	Performance of phototrophic	PT: 1 d
	CO1.12		compartment decreases	RT: 1 d
	CA1.9-EF1.7-	II	Fermentor performance	PT: 3 d
	CO1.10		decreases	RT: -
HM1.4	CA1.10-EF1.2-	III	Fermentor performance	PT: 12 h
	CO1.6		decreases, temperature of	RT: 1 d
			fermentor decreases	
	CA1.10-EF1.2-	II	Stirrer stops, temperature of	PT: 1 w
	CO1.7		fermentor drops to 0°C	RT: 1 w
	CA1.10-EF1.2-	II	Fermentor performance	PT: 3 d
	CO1.4		decreases	RT: 1 w
	CA1.10-EF1.3-	IV	Heat balance is not closed	PT: 12 h
	CO1.8			RT: 1 d
	CA1.10-EF1.4-	III	Fermentor performance	PT: 30 min
	CO1.9		decreases, Temperature of	RT 45 min
			fermentor increases	
HM1.5	CA1.11-EF1.1-	III	Stirrer stops, Liquid level in	PT: 1 s
	CO1.1		fermentor rises	RT: 30 min
	CA1.11-EF1.1-	III	Stirrer stops, Detection of	PT:1 s
	CO1.2		complex molecules in off-	RT: 1 d
			gas, Heat transfer into	
			fermentor decreases,	
			Temperature in reactor	
			changes	
	CA1.11-EF1.1-	III	Detection of complex	PT: 30 min
	CO1.3		molecules in off-gas	RT: 5 min
	CA1.11-EF1.1-	11	Decrease in fermentor	PT: 1 w
	CO1.4		performance	RT: 1 d
	CA1.11-EF1.1-	11	-	-
	COI.5	TT .!.		
	CAI.12-EF1.10-	11 *	Abrupt decreases of	PT: 1 s
	COI.14		termentor pressure,	KT: Id
HM1.6	CA1.10-EF1.2-	111	Decrease in fermentor	PT: 1 h
	CO1.6		temperature, Decrease in	RT: I d
			termentor performance	

TN 3.8 TUHH Biotech HACCP Study for the hyperthermophilic liquefaction unit

page 14 of 14

	CA1.10-EF1.2-	II	Decrease in fermentor	PT: 1 h
	CO1.7		temperature, Decrease in	RT: 2 w
			fermentor performance	
	CA1.10-EF1.2-	II	Decrease in fermentor	PT: 1 h
	CO1.4		temperature, Decrease in	RT: 2 w
			fermentor performance	
	CA1.10-EF1.3-	IV	Heat balance is not closed	PT: 12 h
	CO1.8			RT: 1 d
	CA1.10-EF1.4-	III	Fermentor performance	PT: 30 min
	CO1.9		decreases, Temperature of	RT 45 min
			fermentor increases	
HM1.7	CA1.13-EF1.1-	III	Stirrer speed increases,	PT:1 s
	CO1.1		Detection of complex	RT: 1 d
			molecules in off-gas, Heat	
			transfer into fermentor	
			decreases, Temperature in	
			reactor changes	
	CA1.13-EF1.1-	III	Detection of complex	PT: 30 min
	CO1.2		molecules in off-gas	RT: 5 min
	CA1.13-EF1.1-	III	Decrease in fermentor	PT: 1 w
	CO1.3		performance,	RT: 1 d
	CA1.13-EF1.1-	II	Decrease in fermentor	PT: 1 w
	CO1.4		performance	RT: 1 d
	CA1.13-EF1.1-	II	-	-
	CO1.5			
	CA1.14-EF1.11-	III *	-	-
	CO1.15			
	CA1.14-EF1.11-	II	Mass balance is not closed,	PT: 1 min
	CO1.16		decrease in fermentor	RT: -
	~	_	pressure and temperature	
	CA1.14-EF1.11-	Ι	-	-
	CO1.17			
	CA1.15-EF1.11-	III *	Mass balance is not closed,	PT: 12 h
	CO1.15	**	leakage stream under seals	RT: I d
	CAI.15-EF1.11-	11	Mass balance is not closed	PT: 12 h
	COI.16	TT 7		RI: I d
HM2.1	CA2.1-EF2.1-	IV	Accumulation of VFA in	PT: 1 s
	002.1		filtration	KI:Id
			Intration mass now	
		11/	Dump stops filtration man	DT. 1 h
	CA2.1-EF2.1-	1 V	Fump stops, intration mass	
	CO2.2	III	now decreases	
	CA2.1-EF2.1-	111	Performance of phototrophic	P1:10 DT:24
	002.3		compartment decreases	K1:2d

TN 3.8 TUHH Biotech HACCP Study for the hyperthermophilic liquefaction unit

page 15 of 15

	CA2.1-EF2.1-	II	-	-
	CO2.4			
	CA2.2-EF2.1-	IV	Accumulation of VFA in	PT: 1 s
	CO2.1		fermentor, blackout,	RT: 1d
			filtration mass flow	
			decreases, pump stops	
	CA2.2-EF2.1-	IV	Pump stops, filtration mass	PT: 1 h
	CO2.2		flow decreases	RT: 1 d
	CA2.2-EF2.1-	III	Performance of phototrophic	PT: 1 d
	CO2.3		compartment decreases	RT: 2 d
	CA2.2-EF2.1-	II	-	-
	CO2.4			
	CA2.3-EF2.1-	IV	Accumulation of VFA in	PT: 1 s
	CO2.1		fermentor, blackout,	RT: 1 d
			filtration mass flow	
			decreases, pump stops	
	CA2.3-EF2.1-	IV	Pump stops, filtration mass	PT: 1 h
	CO2.2		flow decreases	RT: 1 d
	CA2.3-EF2.1-	III	Performance of phototrophic	PT: 1 d
	CO2.3		compartment decreases	RT: 2 d
	CA2.3-EF2.1-	II	-	-
	CO2.4			
HM2.2	CA2.4-EF2.2-	IV	Accumulation of VFA in	PT: 6 m
	CO2.1		fermentor, pH in fermentor	RT: 1 a
			drops, performance of	
			hyperthermophilic fermentor	
			decreases	
	CA2.4-EF2.2-	IV	Accumulation of VFA in	PT: 6 m
	CO2.2		fermentor, pH in fermentor	RT: 1 a
			drops, performance of	
			hyperthermophilic fermentor	
			decreases	
	CA2.4-EF2.2-	II	-	-
	CO2.4			
	CA2.4-EF2.2-	IV	Performance of phototrophic	PT: 6 m
	CO2.5		compartment decreases,	RT: 1 a
			VFA / DOC in dialysate	
			decreases	
	CA2.4-EF2.3-	III	Increase of dialysis inlet	PT: 1 s
	CO2.6		pressure	RT: 10 s
	CA2.4-EF2.3-	II	Pressure of inlet / outlet	PT: 1 s
	CO2.7		dialysate / retentate is equal,	RT: -
			volume flow from	
			hyperthermophilic fermentor	

TN 3.8 TUHH Biotech HACCP Study for the hyperthermophilic liquefaction unit

			to phototrophic compartment	
	CA2.4-EF2.3-	II	Increase of dialysis inlet	PT: 1 s
	CO2.8		pressure	RT: 10 s
	CA2.4-EF2.3-	II	-	-
	CO2.9			
	CA2.4-EF2.3-	IV	pH of hyperthermophilic	PT: 6 m
	CO2.1		fermentor drops, VFA	RT: 1 a
			accumulate	
	CA2.4-EF2.3-	IV	pH of hyperthermophilic	PT: 6 m
	CO2.2		fermentor drops, VFA	RT: 1 a
			accumulate	
	CA2.4-EF2.3-	III	Performance of phototrophic	PT: 6 m
	CO2.3		compartment decreases,	RT: 1 a
			VFA / DOC in dialysate	
			decreases	
	CA2.4-EF2.3-	II	-	-
	CO2.4			
HM2.3	CA2.5-EF2.4-	II	High temperature in	-
	CO2.4		dialysate circuit, Pressure of	
			inlet / outlet dialysate /	
			retentate is equal, volume	
			flow from hyperthermophilic	
			fermentor to phototrophic	
			compartment	
	CA2.5-EF2.4-	II	-	-
	CO2.9			
	CA2.5-EF2.5-	II	High temperature in	
	CO2.4		dialysate circuit, leaking of	
			filtration liquid form	
			dialysate unit, mass balance	
			over dialysis unit is not	
			closed	
	CA2.5-EF2.5-	II	-	-
	CO2.10			
HM2.4	CA2.6-EF2.4-	II	Rapid change of pressure in	PT: 1s
	CO2.4		dialysis unit, Pressure of	RT: -
			inlet / outlet dialysate /	
			retentate is equal	
	CA2.6-EF2.4-	II	Rapid change of pressure in	-
	CO2.9		dialysis unit, Pressure of	
			inlet / outlet dialysate /	
			retentate is equal	
	CA2.6-EF2.5-	II	Rapid change of pressure in	-
	CO2.4		dialysis unit, leaking of	

 TN 3.8
 HACCP Study for the hyperthermophilic liquefaction unit

 TUHH Biotech
 Image: Comparison of the hyperthermophilic liquefaction unit

			filtration liquid form	
			dialysate unit, mass balance	
			over dialysis unit is not	
			closed	
	CA2 6-FF2 5-	П	Rapid change of pressure in	_
	CO2 10	11	dialyzia unit leaking of	
	02.10		filtration line line d	
			Intration inquid form	
			dialysate unit, mass balance	
			over dialysis unit is not	
			closed	
	CA2.6-EF2.6-	II	Volume flow to environment	PT: 1s
	CO2.11		/ into relieve vessel	RT: -
HM2.5	CA2.8-EF2.7-	II	Temperature of environment	PT: 1 d
	CO2.12		decreases, membrane	RT: 1 d
			filtration circuit stops	
	CA2 8-EF2 7-	T	F	-
	CO2 13	-		
HM2.6	CA2 9-EF2 8-	II	Mass balance over filtration	PT·1 m
111/1210	CO2.14		membrane is not closed	$RT \cdot 2 m$
	CA2 9-FF2 8-	Ш	Detection of leakage stream	$PT \cdot 1 a$
	CO2 15		Mass balance is not closed	$RT \cdot 1a$
	CA2 9-FF2 8-	П	Carbon and oxygen Mass	$\mathbf{PT} \cdot 1 \mathbf{a}$
	CO2 16		balance is not closed maybe	$\mathbf{RT} \cdot 1$
	002.10		detection of frozen CO ₂	K1. 1 u
			depending on the	
			appending on the	
		TTT +		DT 1
	CA2.9-EF2.8-	111 *	Detection of leakage stream	PI: I a
	CO2.17			RT: La
	CA2.10-EF2.4-	Ш	-	-
	CO2.4			
	CA2.10-EF2.4-	II	-	-
	CO2.9			
	CA2.11-EF2.8-	II	Mass balance is not closed,	PT: 1 m
	CO2.14		detection of leakage streams	RT: 2 m
	CA2.11-EF2.8-	III	Carbon balance is not closed	PT: 1 a
	CO2.15			RT: 1 a
	CA2.11-EF2.8-	II	Carbon and oxygen Mass	PT: 1 a
	CO2.16		balance is not closed. mavbe	RT: 1 a
			detection of frozen CO ₂	
			depending on the	
			environment temperature /	
			nressure	
	CA2 11_FF2 8_	III *	-	
	U112.11 L1 2.0 ⁻	111	1	

TN 3.8 TUHH Biotech HACCP Study for the hyperthermophilic liquefaction unit

			i	
	CO2.17			
	CA2.12-EF2.9-	IV	Cells in loaded dialysate	PT:
	CO2.18		stream, decrease of	probing
			performances of	interval
			phototrophic compartment	RT: -
	CA2 12-EF2 10-	IV	Accumulation of VFA in	PT: 2 m
	CO2.1		fermentor drop of pH	$RT \cdot 3m$
			decrease of performance of	
			hyperthermonhilic	
			liquefaction unit	
	CA2 12 EE2 10	IV	Accumulation of VEA in	$DT \cdot 2m$
	CA2.12-D12.10-	1 V	formation drop of pH	11.2m
	02.2		termentor, drop of pH,	K1:5 III
			decrease of performance of	
			nypertnermopnilic	
		TTT	inquefaction unit	
	CA2.12-EF2.10-	111	Decrease of DOC in loaded	PT. 2 m
	CO2.3		dialysate stream	RT: 3 m
	CA2.12-EF2.10-	11	-	-
	CO2.4			
	CA2.12-EF2.10-	11	-	-
	CO2.9			
HM3.1	CA3.1-EF3.1-	IV	Accumulation of VFA in	PT: 2 m
	CO3.1		fermentor, drop of pH,	RT: 3 m
			decrease of performance of	
			hyperthermophilic	
			liquefaction unit, increase of	
			dialysate inlet pressure	
	CA3.1-EF3.1-	IV	Accumulation of VFA in	PT: 2 m
	CO3.2		fermentor, drop of pH,	RT: 3 m
			decrease of performance of	
			hyperthermophilic	
			liquefaction unit, increase of	
			dialysate inlet pressure	
	CA3.1-EF3.1-	III	Decrease of performance of	PT: 2 m
	CO3.3		phototrophic compartment	RT: 3 m
	CA3.1-EF3.1-	II	-	-
	CO3.4			
	CA3.1-EF3.2-	IV	Accumulation of VFA in	PT: 2 m
	CO3.1		fermentor, drop of pH.	RT: 3 m
			decrease of performance of	
			hyperthermophilic	
			liquefaction unit increase of	
			dialysate inlet pressure	
	CA3.1-EF3.2-	IV	Accumulation of VFA in	PT: 2 m
		± '	rice annulation of the m	I I I I I I I I I I

TN 3.8 TUHH Biotech

HACCP Study for the hyperthermophilic liquefaction unit

page 19 of 18

	CO3.2		fermentor, drop of pH,	RT: 3 m
			decrease of performance of	
			hyperthermophilic	
			liquefaction unit, increase of	
			dialysate inlet pressure	
	CA3.1-EF3.2-	III	Decrease of performance of	PT: 2 m
	CO3.3		phototrophic compartment	RT: 3 m
	CA3.1-EF3.2-	II	-	-
	CO3.4			
HM3.2	CA3.2-EF3.3-	II	-	-
	CO3.4			
	CA3.2-EF3.3-	II	-	-
	CO3.5			
	CA3.2-EF3.4-	II	-	-
	CO3.4			
	CA3.2-EF3.4-	II	-	-
	CO3.6			
HM3.3	CA3.3-EF3.5-	III	Liquid level in fermentor	PT: 5 min
	CO3.7		drops, mass balance of	RT: 10 min
			dialysis stream over dialysis	
			membrane is negative	
	CA3.3-EF3.5-	III	Liquid level in fermentor	PT: 5 min
	CO3.8		rises, mass balance of	RT: 10 min
			dialysis stream over dialysis	
			membrane is positive	
	CA3.3-EF3.3-	II	-	-
	CO3.4			
	CA3.3-EF3.3-	II	_	-
	CO3.5			
	CA3.4-EF3.3-	II	_	-
	CO3.4			
	CA3.4-EF3.3-	II	_	-
	CO3.5			
	CA3.4-EF3.6-	II	Liquid level in fermentor	PT: 5 min
	CO3.7		drops, mass balance of	RT: 10 min
			dialysis stream over dialysis	
			membrane is negative	
HM3.4	CA3.5-EF3.7-	II	Drop of environmental	PT: 1 d
	CO3.9		temperature, higher heat	RT: 1 d
			demand, temperature of	
			returning dialysate is close to	
			0°C	
	CA3.5-EF3.7-	Ι	-	_
	CO3.10			

TN 3.8 HAO TUHH Biotech

HACCP Study for the hyperthermophilic liquefaction unit

page 20 of 20

HM3.5	CA3.6-EF3.8-	II	Mass balance is not closed,	PT: 2 m
	CO3.11		detection of leakage streams	RT: 3 m
	CA3.6-EF3.8-	III	Carbon balance is not closed	PT: 2 m
	CO3.12			RT: 3 m
	CA3.6-EF3.8-	III *	-	-
	CO3.13			
	CA3.7-EF3.3-	II	-	-
	CO3.4			
	CA3.7-EF3.3-	II	-	-
	CO3.5			
	CA3.8-EF3.8-	II	Mass balance is not closed,	PT: 2 m
	CO3.11		detection of leakage streams	RT: 3 m
	CA3.8-EF3.8-	III	Carbon balance is not closed	PT: 2 m
	CO3.12			RT: 3 m
	CA3.8-EF3.8-	III *	-	-
	CO3.13			
* = release of M	O to environment ma	w have con	sequences of higher severity	•

Task 5 Hazard rating

Of the listed hazard manifestations only a small number of scenarios have a severity class I (catastrophic). These scenarios are covered by the hazard manifestations HM1.7, HM2.5, and HM3.4 (fracture of vessel, freezing of pipes) and cannot be accepted. Measures to avoid these hazards will be discussed in the next task.

A lot of scenarios will lead to consequences of a class II severity (critical). A great number of them occur after a stirrer failure in the fermentor. These hazards can be avoided by two separate stirring devices or a reactor construction without a stirrer. Detailed measures are given in task 6. Also the death of the hyperthermophilic biomass is triggered by some HMs and will lead to a consequence of class II severity. This hazard can be minimized but has to be accepted. A re-inoculation might be necessary from time to time. Fracture of membranes or the seals thereof is also an acceptable hazard, if the fracture can be detected fast. The exchange of membranes, seals, and bearings must be done on a regular basis. The risk of fouling and biofilm formation can be accepted, if cleaning procedures are carried out on a regular basis.

The release of hyperthermophilic microorganisms to the environment does not represent an immediate danger to the crew and can be accepted. However there might be some political or administrational restraints of this scenario. In this case, this scenario cannot be accepted.

Task 6 Hazard reduction

In the previous task several scenarios were named, which will lead to unacceptable risks. HM1.7 includes the scenario of a vessel fracture. The likelihood of this event is very low, but the risk cannot be avoided. Regular maintenance together with a careful operation will prolog the lifetime of the vessel beyond the lifetime of the rest of the station. In terrestrial applications stirred tank reactors are designed for 30 years and often operated even longer without damage of the hull.

TN 3.8	HACCP Study for the hyperthermophilic liquefaction unit				
TUHH Biotech					
This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization					
Memorandum of Understanding TOS-MCT/2002/3161/In/CL					

The scenario of freezing pipes is probably the most endangering scenario for the hyperthermophilic liquefaction unit in a cold environment well below 0°C. Once the continuous flow through the pipes stops, the pipes are prone to freezing after a short time. Even a good insulation will not stop this process, but only causes its delay. Countermeasures can be taken, such as heating of the pipes or housing of the pipes in a temperature controlled

plants in Siberia or the Arctic, were this risk also occurs. Stirrer failure will lead to some class II scenarios (critical). At the moment, a stirred tank reactor is used for the hyperthermophilic liquefaction unit. Experiments in the lab showed, that the heat supply of the fermentor can cause problems, when either the heat exchanging surface or the temperature probe is covered with a thick layer of sedimented substrate particles. A good mixing of the fermentor liquid is therefore of high importance. Several types of reactors are known in the field of anaerobic wastewater treatment, such as fluidized bed, USAB, EGSB, tower reactors with gas circulation (e.g. Paques IC®), and Mammut pumps (e.g. Linde Laran®). All of these reactor types do not require the usage of a stirrer. Some of these concepts, especially fluidized bed, tower reactors and Mammut pumps, seem to be fit for operation with high solid content at hyperthermophilic conditions. A overheating of the fermentor in the case of bad mixing conditions can also be circumvented by the use of more than one temperature probe or by monitoring the heat-transfer into the fermentor medium.

room. Further measures can be found in cold environments on earth, such as waste water

The irreversible inactivation of the biomass is also a critical hazard for the operation of the system. This risk in minimized by the usage of two collecting tanks. The first tank receives the substrate and feeds a small test reactor and the second tank. The second tank feeds the hyperthermophilic liquefaction unit. If any toxic substances enter the first tank, the intoxication of the test fermentor will occur one hydraulic retention time before the intoxication of the big fermentor. This will give enough time to close the substrate supply to the hyperthermophilic liquefaction unit.

The hyperthermophilic liquefaction unit uses two membranes, which integrity have to be ensured. The best way to prevent membranes form breakage is a close monitoring of the pressure on both sides of the membrane in the inlet and outlet. High pressure gradients can occur in the form of many hazard manifestations (HM2.2, HM2.4, HM3.1, HM3.3, and HM3.5). High pressure can be circumvented by the usage of burst disks and safety valves and a stable process control system. Fouling problems are encountered by regular cleaning. In general, membrane technology is a well established field in process technology; stable and safe systems are on the market (e.g. drinking water production form sea water)

The release of hyperthermophilic microorganisms can occur in some hazard manifestations (HM1.7, HM2.4, HM2.6, HM3.3, and HM3.5) though hyperthermophilic microorganisms all belong to the group of S1 organisms and therefore do not endanger humans or animals. If the release of microorganisms into a sterile environment cannot be accepted several counter measures are possible. Instead of single seals double seals with sealing liquid must be used. Double seals with sealing liquid are state of the art in design of bioreactors for the cultivation of non-GRAS (Generally regarded as safe) organisms. Membrane seals can be housed, so that leakage streams are gathered. Burst dirks and safety valves must not open to the environment. Instead relieve tanks are necessary, which take up any streams leaving the safety vales.

TN 3.8	HACCP Study for the hyperthermophilic liquefaction unit				
TUHH Biotech					
This document is confidential property of the MELiSSA partners and shall not be used, duplicated, modified or transmitted without their authorization					
Memorandum of Understanding TOS-MCT/2002/3161/In/CL					

MELiSSA

MELiSSA

issue 1 revision 0 -

Task 7 Recommendation of acceptance

The hazards, which were classified unacceptable in task 5, are all acceptable now, if the measures named in task 6 are taken. Additional loops of task 5, 6 and 7 have to be done during basic and detail engineering of the plant.

Task 8 Tracking and communication of the hazards

The identified hazards may be reduced by modifying the hardware. For instance, pressure relief valves could be mounted on the bioreactor in order to prevent overpressure and possibly fracture of the fermentor.

The HACCP has to be repeated regularly, and the staff in charge of the hardware will be trained to react to prevent the occurrence of hazards and react in case of hazard occurrence.

Task 9 Acceptance of the hazards

All hazards which are currently known are acceptable.

2 BALANCE DATA FOR THE HYPERTHERMOPHILIC LIQUEFACTION UNIT

Basis for the data are 10 experiments covering a wide range of process parameters, such as temperature, pH, membrane type and area, hydraulic retention time, dialysate exchange rate, and feed concentration. The composition of the ingoing and outgoing streams is given in Tables 8-11. The provided data are calculated for a 100L- plant with an ingoing wastewater stream of 1L/h. A degradation performance of 75% is assumed. Effluent is saturated with dissolved gases (CO₂ and H₂), which are also withdrawn through the dialysis membrane. A Gas production of 0.003L/(L h) was measured. Due to the high solubility of CO₂ in the fermentation liquid the CO₂ fraction in the gas phase decreases below the stoichiometric fraction of 33% to roughly 10%. Hydrogen makes up the other 90%. (gas fractions are given in vol% or mol%)

Organically bound Oxygen and Hydrogen were not balanced, since an aqueous system is used. A mass balance model is given in TN3.9.

Table 8: Composition of Feed					
Phase	Species	Unit	Value		
Solid	Carbon	[g/L]	6.4		
	Nitrogen	[g/L]	0.5		
	Total	[g/L]	20		
	Biomass*	[g/L]	0.1		
Liquid	Carbon	[g/L]	1.6		
	Nitrogen	[g/L]	0.1		
	VFA	$[g_C/L]$	0.015		
	$\mathrm{NH_4}^+$	$[g_N/L]$	0.15		
Gaseous	Carbon	[g/L]	0		
	Nitrogen	[g/L]	0.02		
	Oxygen	[g/L]	0.006		

TN 3.8 TUHH Biotech

HACCP Study for the hyperthermophilic liquefaction unit

page 23 of 23

	Hydrogen	[g/L]	0
Temperature		[°C]	25
Vol-Flow		[L/h]	1
*mesophilic			

Table 9: Composition of Effluent				
Phase	Species	Unit	Value	
Solid	Carbon	[g/L]	1.6	
	Nitrogen	[g/L]	0.1	
	Total	[g/L]	5	
	Biomass*	[g/L]	0.5	
Liquid	Carbon	[g/L]	0.4	
	Nitrogen	[g/L]	0.05	
	VFA	$[g_C/L]$	0.04	
	$\mathrm{NH_4}^+$	$[g_N/L]$	0.01	
Gaseous	Carbon	[g/L]	0.036	
	Nitrogen	[g/L]	0	
	Oxygen	[g/L]	0	
	Hydrogen	[g/L]	0.001	
Temperature		[°C]	90	
Vol-Flow		[L/h]	1	
*hyperthermo	ophilic			

Table 10: Composition of Dialysate in				
Phase	Species	Unit	Value	
Solid	Carbon	[g/L]	0	
	Nitrogen	[g/L]	0	
	Total	[g/L]	0	
	Biomass	[g/L]	0	
Liquid	Carbon	[g/L]	0.02	
_	Nitrogen	[g/L]	0.001	
	VFA	$[g_C/L]$	0	
	$\mathrm{NH_4}^+$	$[g_N/L]$	0	
Gaseous	Carbon	[g/L]	0	
	Nitrogen	[g/L]	0	
	Oxygen	[g/L]	0	
	Hydrogen	[g/L]	0	
Temperature		[°C]	90	
Vol-Flow		[L/h]	20	

TN 3.8 TUHH Biotech HACCP Study for the hyperthermophilic liquefaction unit

page 24 of 24

Table 11: Composition of Dialysate out					
Phase	Species	Unit	Value		
Solid	Carbon	[g/L]	0		
	Nitrogen	[g/L]	0		
	Total	[g/L]	0		
	Biomass	[g/L]	0		
Liquid	Carbon	[g/L]	0.3		
	Nitrogen	[g/L]	0.05		
	VFA	$[g_C/L]$	0.02		
	$\mathrm{NH_4}^+$	$[g_N/L]$	0.006		
Gaseous	Carbon	[g/L]	0.03		
	Nitrogen	[g/L]	0		
	Oxygen	[g/L]	0		
	Hydrogen	[g/L]	0.001		
Temperature		[°C]	90		
Vol-Flow		[L/h]	20		

Table 11: Composition of biogas			
Phase	Species	Unit	Value
Solid	Carbon	[g/L]	0
	Nitrogen	[g/L]	0
	Total	[g/L]	0
	Biomass	[g/L]	0
Liquid	Carbon	[g/L]	0
	Nitrogen	[g/L]	0
	VFA	$[g_C/L]$	0
	$\mathrm{NH_4}^+$	$[g_N/L]$	0
Gaseous	Carbon	[g/L]	0.04
	Nitrogen	[g/L]	0
	Oxygen	[g/L]	0
	Hydrogen	[g/L]	0.03
Temperature		[°C]	90
Vol-Flow		[L/h]	1.5

TN 3.8 TUHH Biotech HACCP Study for the hyperthermophilic liquefaction unit